90/12/23
9:16 ص
مهندسی شیمی علم کاربرد ریاضیات، شیمی، فیزیک و اقتصاد در فرآیند تبدیل مواد خام به مواد باارزشتر یا سودمندتر است. مهندسی شیمی را میتوان بطور کلی علم استفاده از موازنه جرم، موازنه انرژی و موازنه اندازه حرکت برای طراحی و کنترل واحدهای فرآیندی شیمیایی از قبیل واحدهای یک پالایشگاه پتروشیمی، صنایع چوب و کاغذ و غیره در نظر گرفت.
مهندسی شیمی عمدتاً در طراحی و نگهداری فرآیندهای شیمیایی برای تولید انبوه به کار میرود. به این بخش از مهندسی شیمی، مهندسی فرآیند گفته میشود.
فرآیندهای مجزایی که توسط یک مهنس شیمی به کار گرفته میشوند (مانند تقطیر، استخراج و...)، عملیات واحد نام داشته و شامل واکنش شیمیایی، عملیات انتقال جرم، انتقال حرارت و انتقال اندازه حرکت هستند. این فرآیندها برای سنتز شیمیایی یا جداسازی شیمیایی با هم ترکیب میشوند.
سه قانون فیزیکی اساسی در مهندسی شیمی، اصل بقای جرم، اصل بقای انرژی و اصل بقای اندازه حرکت هستند. انتقال ماده و انرژی در یک فرآیند شیمیایی با استفاده از موازنه جرم و انرژی برای کل واحد، عملیات واحد یا بخشی از آن ارزیابی میشود. مهندسین شیمی اصول ترمودینامیک، سینتیک واکنش و پدیدههای انتقال را به کار میگیرند.
مهندسی شیمی نوین، گسترهای فراتر از مهندسی فرآیند را در بر میگیرد. هدف اصلی مهندسی شیمی استفاده از دانش شیمی در خلق مواد و محصولات بهتر برای دنیای امروز است. امروزه مهندسین شیمی علاوه بر فرآیندهای تولید مواد اولیه پایه، بلکه در تو سعه و تولید محصولات باارزش و متنوع شرکت دارند. این محصولات شامل مواد ویژه و کارآمد برای صنایعی همچون هوافضا، خودروسازی، پزشکی، صنایع الکترونیک، کاربردهای محیط زیست و صنایع نظامی است. به عنوان مثالهایی از این محصولات میتوان به الیاف، منسوجات و چسبهای بسیار قوی، مواد زیستسازگار و داروهای جدید اشاره کرد. امروزه مهندسی شیمی ارتباطی تنگاتنگ با علوم زیستشناسی، مهندسی پزشکی و اغلب شاخههای مهندسی دارد.[?][?]محتویات [نهفتن]
تاریخچه مهندسی شیمی
اوّلین درس در زمینه مهندسی شیمی نخستین بار توسط پروفسور «نورتون» در سال ???? در دانشگاه MIT و در دانشکده مکانیک تدریس شد. نورتون شیمی صنعتی تدریس میکرد. در آن زمان صنایع شیمیایی رو به توسعه گذاشته بودند و لازم بود ساخت و بهره برداری از فرآیندهای شیمیایی توسّط افراد متخصّص صورت گیرد. در آن زمان طرّاحی و نظارت بر ساخت فرآیندهای شیمیایی و صنایع شیمیایی به دو شکل صورت میگرفت:
?) به وسیله شیمی دانهایی که از تئوریهای شیمیایی و علوم آزمایشگاهی آگاهی داشته، ولی اطّلاعات فنّی و تجارب کافی از طراحی صنعتی نداشتند.
?) به وسیله مهندسان مکانیکی که تجربه طرّاحی صنعتی داشتند، ولی اطّلاعات کافی از فرآیندهای شیمیایی نداشتند.
این موضوع باعث شد که تا مدّتی برای طرّاحی واحدهای شیمیایی از شیمیدانان و مهندسان مکانیک به صورت مشترک استفاده شود. امّا برای هماهنگ کردن کار این دو گروه، به افرادی نیاز بود که هم از فرآیندهای شیمیایی و هم از طرّاحی صنعتی مطّلع باشند و هم تجربههای آزمایشگاهی لازم را داشته باشند. از این رو رشتهای جدید در دانشگاهها با نام «شیمی صنعتی» یا «صنایع شیمیایی» به وجود آمد. با تئسعه تدریجی صنایع شیکیایی، نیاز به چنین متخصّصانی که هم در زمینه طرّاحی صنعتی و هم در زمینه فرآیندهای شیمیایی تخصص داشتند، بیشتر احساس شد. به این ترتیب، دورههایی با نام «مهندسی شیمی مدرن» در دانشگاهها پایه گذاری شدند. توسعه صنایع شیمیایی باعث شد که دانشگاهها اقدام به تأسیس دانشکده مهندسی شیمی به صورت مجزّا کرده و آن را جدا از رشتههای شیمی و مکانیک تدریس کنند. [?]
مهندسی شیمی در ایران :
مهندسی شیمی در ایران نخستین بار در «مدرسه صنعتی ایران و آلمان» تدریس شد. این مرکز آموزشی که پس از جنگ جهانی اول به عنوان غرامت جنگی به ایران واگذار شده بود، در هر کدام از رشتههای مهندسی شیمی، برق و ماشین حدود بیست دانشجو میپذیرفت. دانش آموختگان مدرسه صنعتی ایران پس از یک دوره تحصیلی دو ساله «مهندس شیمی» نامیده میشدند. امّا در برنامه درسی آنها دروسی چون «شیمی تجزیه» و آزمایشگاه وجود داشت که دروس مربوط به رشته شیمی است. در سال ???? «دانشگاه تهران» تأسیس شد و رشته مهندسی شیمی یکی از رشتههای ارائه شده در دانشکده فنّی بود. در این میان، رقابتهای ناسالم میان دانش آموختگان دانشکده فنّی و مدرسه صنعتی موجب شد تا مدرسه عالی صنعتی منحل شود. در سال ???? «دانشگاه صنعتی امیرکبیر» (پلی تکنیک تهران) تأسیس شد و در رشته مهندسی شیمی و برای یک دوره چهار ساله به پذیرش دانشجو اقدام کرد. امّا برنامه درسی آن زمان دانشگاه تهران و پلی تکنیک هنوز با برنامه واقعی مهندسی شیمی تفاوت بسیار داشت. درسهایی مانند «انتقال حرارت»، «انتقال جرم» و «طراحی رآکتور» در سرفصل دروس گنجانده نشده بودند و از تنها درسهای ویژه مهندسی شیمی «تقطیر»، «جذب» و «ترمودینامیک» را میتوان نام برد. پس ازاین دو دانشگاه، «دانشگاه شیراز» و پس از آن در سال ???? «دانشگاه صنعتی شریف» (صنعتی آریا مهر سابق)این رشته را راه اندازی کردند[?] که برنامه درسی آنها تفاوت چندانی با برنامه درسی که امروز در رشته مهندسی شیمی ارائه میشود نداشت. در سالهای بعد، دوره کارشناسی ارشد و در برخی دانشگاهها دوره دکتری مهندسی شیمی نیز راه اندازی شد.[?]
گرایشهای مهندسی شیمی
مهندسی صنایع پتروشیمی
مهندسی صنایع گاز
مهندسی صنایع پلیمر
مهندسی صنایع غذایی
مهندسی پالایش
مهندسی صنایع شیمیایی معدنی
مهندسی طراحی فرآیندهای صنایع نفت
مهندسی بیوتکنولوژی
دروس مهندسی شیمی در ایران
بر اساس مصوّبات شورای عالی انقلاب فرهنگی، علاوه بر دروس عمومی و علوم پایه که دانشجویان فنّی مهندسی موظف به گذراندن آن هستند، سایر دروس این رشته به دو دسته «اصلی» و «تخصّصی» تقسیم میشوند. دروس اصلی آن دسته از دروس هستند که تمامی دانشجویان مهندسی شیمی با هر گرایشی آنها را میگذرانند و دروس تخصصی به دروسی اطلاق میشود که با توجه به گرایش، دانشجو موظف به گذراندن آنها است.
دروس اصلی
موازنه انرژی و مواد
مکانیک سیّالات
انتقال حرارت
انتقال جرم
طرّاحی رآکتورهای شیمیایی
کنترل فرآیند
کاربرد ریاضیات در مهندسی شیمی
ترمودینامیک
عملیّات واحد
دروس تخصّصی
بسته به گرایش متفاوت است
91/2/28
10:56 ص
انتقال گرما به وسیله نانوسیالات
خلاصه :
تحقیقات اخیر روی نانوسیالات، افزایش قابل توجهی را در هدایت حرارتی آنها نسبت به سیالات بدون نانوذرات و یا همراه با ذرات بزرگتر (ماکرو ذرات) نشان میدهد. از دیگر تفاوتهای این نوع سیالات، تابعیت شدید هدایت حرارتی از دما، همچنین افزایش فوقالعادة فلاکس حرارتی بحرانی در انتقال حرارت جوشش آنهاست. نتایج آزمایشگاهی به دست آمده از نانوسیالات نتایج قابل بحثی است که به عنوان مثال میتوان به انطباق نداشتن افزایش هدایت حرارتی با تئوریهای موجود اشاره کرد
چکیده |
|||
2. تهیه نانوسیالات |
|||
3. انتقال حرارت در سیالات ساکن بیشترین تحقیقات روی هدایت حرارتی نانوسیالات، در زمینه سیالات حاوی نانوذرات اکسید فلزی انجام شده است [18]. [23]. |
|
||
|
|||
|
|||
ژوان ولی [32] ضریب انتقال حرارت جابهجایی اجباری در جریان آشفته را نیز اندازه گرفتند و نشان دادند که مقدار کمی از نانوذرات مس در آب دیونیزه شده، ضریب انتقال حرارت را به صورت قابل توجهی افزایش میدهد، به طور مثال افزودن دو درصد حجمی از نانوذرات مس به آب، حدود 39 درصد انتقال حرارت آن را افزایش میدهد. در حالی که در تناقض با نتایج بالا، پکوچو [35] کاهش 12درصدی ضریب انتقال حرارت را در سوسپانسیون حاوی سه درصد حجمی از آلومینا و تیتانا در همان شرایط مشاهده کردند. پوترا [28] با کار روی جابجائی آزاد، بر خلاف هدایت و جابهجایی اجباری، کاهش انتقال حرارت را مشاهده کرد. داس با [17] انجام آزمایشهای جوشش روی آلومینا- آب نشان داد که با افزایش درصد حجمی نانوذرات، بازدهی جوشش نسبت به سیال پایه کم میشود. وی این کاهش را به تغییر خواص سطحی بویلر به علت تهنشینی نانوذرات روی سطح ناهموار آن نسبت داد، نه به تغییر خواص سیال. یو [6] با اندازهگیری فلاکس حرارتی بحرانی برای جوشش روی سطوح تخت و مربعی مس که در نانوسیال آب- آلومینا غوطهور بودند، نشان داد که فلاکس حرارتی این سیالات سه برابر آب است و اندازه متوسط حباب، افزایش و فرکانس تولید آنها کاهش مییابد. این نتایج را واسالو [7] نیز تأیید کرد. وی روی نانوسیال آب - سیلیکا کار میکرد و افزایش فلاکس حرارت بحرانی را برای غلظتهای کمتر از یکهزارم درصد حجمی گزارش کرد. هنوز مدلی برای پیشبینی این افزایشها و فاکتورهای مؤثر بر آن وجود ندارد. |
91/1/31
3:28 ع
کروژن چیست ؟
کروژنها مواد آلی رسوبی شکنندهای هستند که در حلالهای مواد آلی غیرمحلول هستند و دارای ساختمان پلیمری میباشند. مواد آلی شکنندهای که در حلالهای آلی محلول باشند، بیتومن نامیده میشوند. ولی کروژنها را میتوان توسط اسیدهایی مانند hcl و hf از سنگهای رسوبی باز پس گرفت. همچنین ممکن است توسط روش دانسیته و استفاده از مایعات سنگین بتوان کروژن را جد اساخت. چون کروژن نسبت به کانیهای دیگر سبک بوده و وزن مخصوص کمتری دارد.
روشهای مطالعه کروژن
تمرکز کروژن بوجود آمده را میتوان با میکروسکوپهای با نور عبوری یا انعکاسی مورد بررسی قرار داد و هویت بیولوژیکی و منشا و نحوه بوجود آمدن اولیه آنها را مطالعه نمود. همچنین با استفاده از میکروسکوپهای با نور ماورای بنفش و مشاهده کردن رنگهای فلورسانس ، اجزا اصلی تشکیل دهنده کروژنها را مشخص ساخت و از اسپکتروسکوپهای مادون قرمز نیز جهت بررسی ترکیب شیمیایی و ساختمانی کروژنها کمک گرفت.
تجزیه کروژن
مولکولهای بزرگ و پیچیده کروژن به سختی قابل تجزیه بوده ولی در اثرحرارت دادن در اتمسفر به ذرات کوچکتری شکسته میشوند که بعدا آنها را میتوان توسط دستگاههای کروماتوگرافی گازی و اسپکترومترهای جرمی تجزیه نمود.
تغییرشکل کروژنهای مدفون در اثر افزایش حرارت تبدیل کروژنها به نفت و گاز فرایندی است که به درجه حرارت بالایی نیازمند است. برای شروع تبدیل مواد حیوانی و گیاهی آلی به هیدروکربنها درزیرفشار 1-2 کیلومتر رسوب ، حرارتی درحدود 70-50 درجه سانتیگراد لازم است. درجه حرارت نهایی برای این تبدیل که بلوغ یا مچوراسیون نامیده میشود. حتی به بیش از 150 درجه سانتیگراد میرسد. لازم به ذکر است که در نواحی با گرادیان زمین گرمایی بیشتر ، به عنوان مثال نواحی با جریان حرارتی بالا ، امکان دارد مواد آلی درعمق کمتری به درجه بلوغ (مچوریتی) برسند.
تاثیر فشار بر ساختمان کروژنها
با افزایش حرارت در اثر افزایش بار رسوبی فوقانی عاملهای باندی c- c مولکولهای آلی موجود در کروژن شکسته میشوند و گاز نیز در این مرحله تشکیل میشود. بنابراین با بالا رفتن حرارت همگام با افزایش فشار ، باندهای c- c بیشتری در کروژن و مولکولهای هیدروکربنی که قبلا تشکیل شده بودند، شکسته میشود. این شکستگی راهنمایی برای تشکیل هیدروکربنهای سبک تر ، از زنجیرههای هیدروکربنی طویل و از کروژن است. جدا شدن متان و دیگر هیدروکربنها سبب میشود که کروژن باقیمانده نسبتا از کربن غنی شود. زیرا در آغاز ، کروژنهای تیپ 1و 2 نسبت h/c برابر 1.7 و 1.3 دارند.
دیاژنز کروژن
شروع دیاژنز با درجه حرارت 70-60 صورت میگیرد و ازدیاد درجه حرارت تا زمانی که نسبت h/c =0.6 و نسبت o/c =0.1 باشد تا حدود 150 درجه سانتیگراد ادامه مییابد. در درجه حرارتهای بیشتر تمام زنجیرههای هیدروکربنی طویل تقریبا شکسته میشوند و بنابراین باقیمانده آن بطور کلی تنها از گاز متان (گازخشک) میباشد و ترکیب کروژن تدریجا به سمت کربن خالص میل خواهدکرد. ( h/c=0 )
محاسبه مچوریتی
محاسبه مچوریتی (به بلوغ رسیدن) سنگ مادر برای پیشگویی اینکه چه سنگهای مادری برای تولید نفت بقدر کافی رسیده هستند و همچنین جهت محاسبه کامپیوتری و طرح ریزی بکار میرود که اینها یک قسمت مهم از آنالیز حوضه برای اکتشافات نفت میباشند و مهمترین بهره از این محاسبات تعیین تاریخچه فرونشینی است که از ثبت چینه شناسی و تخمین گرادیان زمین گرمایی مشتق میشود. بنابراین تاریخچه فرونشینی تابعی از زمان زمین شناسی میباشد.
انواع کروژن
بطور کلی سه نوع کروژن قابل تشخیص است. وجه تمایز این سه نوع کروژن به نوع ماده آلی تشکیل دهنده و ترکیب شیمیایی آن بستگی دارد.
کروژن نوع اول :
این نوع کروژن دارای منشا جلبکی بوده و نسبت هیدروژن به کربن موجود در آن از سایر کروژنها بیشتر میباشد ( نسبت هیدروژن به کربن حدود 1.2 تا 1.7 است ).
کروژن نوع دوم :
کروژن نوع دوم یا لیپتینیکها نوع حد واسط کروژن محسوب میشود. نسبیت هیدروژن به کربن نوع دوم ، بیش از 1 میباشد. قطعات سر شده جلبکی و مواد مشتق شده از فیتو پلانکتونها و زئوپلانکتونها متشکلین اصلی (کروژن ساپروپل) کروژن نوع دوم است.
کروژن نوع سوم :
کروژن نوع سوم یا هومیک دارای نسبت هیدروژن به کربن کمتر از 84 % میباشد. کروژن نوع سوم از لیگنیت و قطعات چوبی گیاهان که در خشکی تولید میشود به وجود میآید.
مراحل تشکیل کروژن
مواد آلی راسب شده در حوضههای رسوبی با گذشت زمان در لابهلای رسوبات دفن میشود. ازدیاد عمق دفنشدگی با افزایش فشار و دمای محیط ارتباط مستقیم دارد. تیسوت ( 1977) تحولات مواد آلی در مقابل افزایش عمق را تحت سه مرحله به شرح زیر تشریح میکند :
مرحله دیاژنز
تحولات مواد آلی در مرحله دیاژنز در بخشهای کم عمقتر زیر زمین و تحت دما و فشار متعارف انجام میشود. این تحولات شامل تخریب بیولوژیکی توسط باکتریها و فعل و انفعالات غیر حیاتی میباشد. متان ، دیاکسید کربن و آب از ماده آلی جدا شده و مابقی به صورت ترکیب پیچیده هیدروکربوری تحت عنوان کروژن باقی میماند. در مرحله دیاژنز محتویات اکسیژن ماده آلی کاسته میشود ولی نسبت هیدروژن به کربن ماده آلی کم و بیش بدون تغییر باقی میماند.
تاثیر مرحله دیاژنز در بوجود آمدن هیدروکربنها :
در اوائل مرحله دیاژنز مقداری از مواد جامد از قبیل خرده فسیلها و یا کانیهای کوارتز و کربنات کلسیم و … ، ابتدا حل شده بعدا از آب روزنهای اشباع گشته ، سپس به همراه سولفورهای آهن - سرب و روی و مس و غیره دوباره رسوب میکنند. در این مرحله مواد آلی نیز به سوی تعادل میروند. یعنی اول در اثر فعالیت باکتریها مواد آلی متلاشی شده و بعدا همزمان با سخت شدن رسوبات (سنگ شدگی) این مواد نیز پلیمریزه شده و مولکولهای بزرگتری را تشکیل داده سپس به تعادل میرسند که در این حالت تعادل آنها را کروژن مینامند.
مرحله کاتاژنز
تحولات مواد آلی در مرحله کاتاژنز در عمق بیشتر تحت دمای زیادتر صورت میگیرد. جدایش مواد نفتی از کروژن در مرحله کاتتاژنز به وقوع میپیوندد. در ابتدا نفت و سپس گاز طبیعی از کروژن مشتق میشود. نسبت هیدروژن به کربن ماده آلی کاهش یافته ولی در مقدار اکسیژن به کربن تغییر عمدهای صورت نمیگیرد.
تاثیر مرحله کاتاژنز در بوجود آمدن هیدروکربنها : در این مرحله مواد آلی تغییرات زیادی پیدا میکنند و حین تغییر وضع مداوم مولکولی در کروژنها در ابتدا نفتهای سنگین ، بعدا نفتهای سبک و در آخر گازهای مرطوب تولید میشوند. در آخر مرحله کاتاژنز تقریبا تمامی شاخههای زنجیری هیدروکربنها از مولکول کروژن جدا شده و مواد آلی باقیمانده در مقایسه با زغال سنگها از نظر درجه بلوغ ، شبیه به آنتراسیت بوده و ضریب انعکاسی بیش از 2% دارند.
مرحله متاژنز
تحولات ماده آلی در مرحله متاژنز تحت دما و فشار بالاتر نسبت به مراحل قبلی انجام میشود. بقایای هیدروکربن بخصوص متان از ماده آلی جدا میشود. نسبت هیدروژن به کربن کاهش یافته ، به نحوی که در نهایت کربن به صورت گرافیت باقی خواهد ماند. تخلخل و تراوایی سنگ در این مرحله به حد قابل چشم پوشی میرسد.
تاثیر مرحله متاژنز در بوجود آمدن هیدروکربنها :
در مرحله متاژنز و متامورنیسم رسوبات در عمق بیشتر و تحت تاثیر حرارت و فشار بیش از حد قرار دارند. در این مرحله کانیهای رسی ، آب خودشان را از دست داده و در نتیجه تبلور مجدد در بافت اصلی سنگ تغییرات بوجود میآید. در این مرحله کروژن باقی مانده (موادآلی باقی مانده) تبدیل به متان و کربن باقیمانده میشود. این مواد را میتوان قابل قیاس با تبدیل زغال سنگ به آنتراسیت دانست که ضریب انعکاسشان تا 4% میرسد. بالاخره در آخراین مرحله باقیمانده مواد آلی که به صورت کربن باقی مانده در آمده بود، تبدیل به گرافیت میشود.
رسیدگی کروژن
نفت و گاز در مرحله کاتاژنز از کروژن نیمه رسیده مشتق میشوند. اشتقاق هیدروکربور از کروژن نارس امکان پذیر نیست. به دنبال رسیدگی کروژن در ابتدا نفت و سپس گاز طبیعی از کروژن جدا میشود. هنگامی که کروژن کاملا برسد دیگر نفت و گازی از آن به وجود نمیآید. رسیدگی کروژن به دما ، زمان و احتمالا فشار بستگی دارد.
تولید عمده نفت از کروژن در دمای 60 تا 120 درجه سانتیگراد صورت میگیرد. تولید عمده گاز از کروژن در دمای 120 تا 225 درجه سانتیگراد است. کروژن در دمای بالاتر از 230 درجه سانتیگراد کلیه مواد هیدروکربوری خود را از دست میدهد و تنها به صورت گرافیت باقی میماند.
91/1/31
3:16 ع
پمپ ها با جا به جایی غیر مثبت : توانایی مقاومت در فشار های بالا را ندارند و به ندرت در صنعت هیدرولیک مورد استفاده قرار می گیرند و معمولا به عنوان انتقال اولیه سیال از نقطه ای به نقطه دیگر بکار گرفته می شوند. بطور کلی این پمپ ها برای سیستم های فشار پایین و جریان بالا که حداکثر ظرفیت فشاری آنها به 250psi تا3000si محدود می گردد مناسب است. پمپ های گریز از مرکز (سانتریفوژ) و محوری نمونه کاربردی پمپ های با جابجایی غیر مثبت می باشد.
پمپ های با جابجایی مثبت : در این پمپ ها به ازای هر دور چرخش محور مقدار معینی از سیال به سمت خروجی فرستاده می شود و توانایی غلبه بر فشار خروجی و اصطکاک را دارد . این پمپ ها مزیت های بسیاری نسبت به پمپ های با جابه جایی غیر مثبت دارند مانند مانند ابعاد کوچکتر ، بازده حجمی بالا ، انعطاف پذیری مناسب و توانایی کار در فشار های بالا ( حتی بیشتر از psi)
پمپ ها با جابه جایی مثبت از نظر ساختمان :
1- پمپ های دنده ای
2 - پمپ های پره ای
3- پمپ های پیستونی
پمپ ها با جابه جایی مثبت از نظر میزان جابه جایی :
1- پمپ ها با جا به جایی ثابت
2- پمپ های با جابه جایی متغییر
در یک پمپ با جابه جایی ثابت (Fixed Displacement) میزان سیال پمپ شده به ازای هر یک دور چرخش محور ثابت است در صورتیکه در پمپ های با جابه جایی متغیر (Variable Displacement) مقدار فوق بواسطه تغییر در ارتباط بین اجزاء پمپ قابل کم یا زیاد کردن است. به این پمپ ها ، پمپ ها ی دبی متغیر نیز می گویند.
باید بدانیم که پمپ ها ایجاد فشار نمی کنند بلکه تولید جریان می نمایند. در واقع در یک سیستم هیدرولیک فشار بیانگر میزان مقاومت در مقابل خروجی پمپ است اگر خروجی در فشار یک اتمسفر باشد به هیچ وجه فشار خروجی پمپ بیش از یک اتمسفر نخواهد شد .همچنین اگر خروجی در فشار 100 اتمسفر باشد برای به جریان افتادن سیال فشاری معادل 100 اتمسفر در سیال بوجود می آید.
پمپ های دنده ای Gear Pump
این پمپ ها به دلیل طراحی آسان ، هزینه ساخت پایین و جثه کوچک و جمع و جور در صنعت کاربرد زیادی پیدا کرده اند . ولی از معایب این پمپ ها می توان به کاهش بازده آنها در اثر فرسایش قطعات به دلیل اصطکاک و خوردگی و در نتیجه نشت روغن در قسمت های داخلی آن اشاره کرد. این افت فشار بیشتر در نواحی بین دنده ها و پوسته و بین دنده ها قابل مشاهده است.
پمپ ها ی دنده ای :
1- دنده خارجی External Gear Pumps
2– دنده داخلی Internal Gear Pumps
3- گوشواره ای Lobe Pumps
4- پیچی Screw Pumps
5- ژیروتور Gerotor Pumps
1- دنده خارجی External Gear Pumps
در این پمپ ها یکی از چرخ دنده ها به محرک متصل بوده و چرخ دنده دیگر هرزگرد می باشد. با چرخش محور محرک و دور شدن دنده های چرخ دنده ها از هم با ایجاد خلاء نسبی روغن به فضای بین چرخ دنده ها و پوسته کشیده شده و به سمت خروجی رانده می شود.
لقی بین پوسته و دنده ها در اینگونه پمپ ها حدود (0.025 mm ) می باشد.
افت داخلی جریان به خاطر نشست روغن در فضای موجود بین پوسته و چرخ دنده است که لغزش پمپ (Volumetric efficiency ) نام دارد.
با توجه به دور های بالای پمپ که تا rpm 2700 می رسد پمپاژ بسیار سریع انجام می شود، این مقدار در پمپ ها ی دنده ای با جابه جایی متغییر می تواند از 750 rpm تا 1750 rpm متغییر باشد. پمپ ها ی دنده ای برای فشارهای تا (کیلوگرم بر سانتی متر مربع200 ) 3000 psi طراحی شده اند که البته اندازه متداول آن 1000 psi است.
2– دنده داخلی Internal Gear Pumps
این پمپ ها بیشتر به منظور روغنکاری و تغذیه در فشار های کمتر از 1000 psi استفاده می شود ولی در انواع چند مرحله ای دسترسی به محدوده ی فشاری در حدود 4000 psi نیز امکان پذیر است. کاهش بازدهی در اثر سایش در پمپ های دنده ای داخلی بیشتر از پمپ های دنده
3- پمپ های گوشواره ای Lobe Pumps
این پمپ ها از خانواده پمپ های دنده ای هستند که آرامتر و بی صداتر از دیگر پمپ های این خانواده عمل می نماید زیرا هر دو دنده آن دارای محرک خارجی بوده و دنده ها با یکدیگر درگیر نمی شوند. اما به خاطر داشتن دندانه های کمتر خروجی ضربان بیشتری دارد ولی جابه جایی حجمی بیشتری نسبت به سایر پمپ های دنده ای خواهد داشت.
4- پمپ های پیچی Screw Pumps
پمپ پیچی یک پمپ دنده ای با جابه جایی مثبت و جریان محوری بوده که در اثر درگیری سه پیچ دقیق (سنگ خورده) درون محفظه آب بندی شده جریانی کاملا آرام ، بدون ضربان و با بازده بالا تولید می کند. دو روتور هرزگرد به عنوان آب بندهای دوار عمل نموده و باعث رانده شدن سیال در جهت مناسب می شوند.حرکت آرام بدون صدا و ارتعاش ، قابلیت کا با انواع سیال ، حداقل نیاز به روغنکاری ، قابلیت پمپاژ امولسیون آب ، روغن و عدم ایجاد اغتشاش زیاد در خروجی از مزایای جالب این پمپ می باشد.
5- پمپ های ژیروتور Gerotor Pumps
عملکرد این پمپها شبیه پمپ های چرخ دنده داخلی است. در این پمپ ها عضو ژیروتور توسط محرک خارجی به حرکت در می آید و موجب چرخیدن روتور چرخ دندهای درگیر با خود می شود.
در نتیجه این مکانیزم درگیری ، آب بندی بین نواحی پمپاژ تامین می گردد. عضو ژیروتور دارای یک چرخ دندانه کمتر از روتور چرخ دنده داخلی می باشد.
حجم دندانه کاسته شده ضرب در تعداد چرخ دندانه چرخ دنده محرک ، حجم سیال پمپ شده به ازایئ هر دور چرخش محور را مشخص می نماید.
91/1/31
3:10 ع
قابلیت محافظت یک فیلتر هوا از ورود ذرات معلق به داخل موتور معمولاً بر اساس مفاد پروسه ISO 5011 بررسی می گردد ، برای این منظور ما یک نمونه از فیلترهای K&N را در تست گرد و غبار کورس ( COWSE TEST DART ) که در آن سایز ذرات گرد و غبار را 5.5 میکرون تا 176 میکرون می باشد قرار دادیم برای اینکه تصوری از این ابعاد داشته باشید می توانید به این نکته توجه کنید که قطر موی انسان در حدود 50 میکرون می باشد ، نتیجه تست فوق را راندمان یک فیلتر هوا در پالایش هوای ورودی می نامند ، این عدد بیانگر تعداد گردو غبار گرفته شده توسط فیلتر هوای ورودی موتور می باشد ، هدف K&N طراحی فیلترهائی است که در عین داشتن کمترین مقاومت در برابر هوای ورودی راندمان بالائی در حدود % 98 داشته باشد. به دلیل آنکه هیچ دو فیلتری از لحاظ ابعاد و شکل مانند یکدیگر نیستند ، مقدارمطلق دبی هوا و راندمان پالایش آنها با هم متفاوت خواهد بود ، ولی در هر صورت شما می توانید با خیال راحت مطمئن باشید که تمامی فیلترهای K&N طوری طراحی شده اند که بیشترین هوای ورودی را در اختیار موتور خودروی شما قرار میدهند ، در حالیکه با تمام قدرت از ورود ذرات گرد و غبار به موتور خودروی شما جلوگیری می نمایند .
بدست آوردن هر دو خاصیت نقش بسیار بحرانی برای موتور خودرو دارد به همین دلیل است که مصرف کنندگان با توجه به این دو خاصیت اقدام به خرید فیلتر نمایند ، طراحی یک فیلتر که دبی هوای بالائی داشته باشد کار چندان پیچیده ای نمی باشد ، ولی طراحی و ساخت فیلترهای که هم قابلیت عبور هوای بالا و در عین حال قابلیت جذب ذرات معلق در طول مدت کارکرد خود را داشته باشد کاری بس پیچیده و سخت می باشد ، به همین دلیل است که علی رغم تلاش کمپانیهای بسیار مخصوصاٌ کمپانیهای چینی در ساخت فیلترهای شبیه به K&N ( که حتی از رنگ مشابه K&N سود برده اند ) ، هیچ کمپانی در دنیا موفق به ساخت چینین فیلتری با چینین سطح محافظتی از موتور خودرو نگردیده است .
چرا دبی هوا عامل مهمی در کارکرد موتور می باشد ؟
سبک بیان بسیار ساده است، یک موتور مانند یک پمپ هوا می باشد ، هر چه هوای بیشتری وارد موتورگردد احتراق بهترصورت پذیرفته وبازده موتوربالا رفته درنتیجه قدرت موتوربالا تروگشتاور بیشتر از آن استخراج می شود ، اسب بخار واحد اندازه گیری قدرت موتور و نیوتن متر واحد اندازه گیری گشتاور موتور می باشد ، هر چه گشتاور بیشتر باشد شتابگیری بهتر می گردد و هر چه قدرت موتور بیشتر باشد حداکثر سرعت ( بدون در نظر گرفتن تغییر در ضرایب گیربکس دیفرانسیل ) فیلترهای K&N با کاهش مقاومت در برابر هوای ورودی طوری طراحی شده اند که هر دو فاکتور مقاوت موتور و گشتاور مورد را افزایش دهند ، به این ترتیب بهبود پاسخگوئی به تغییرات دریچه گاز واضح خواهد بود .
هزینه نگهداری بهینه مقاومت ناچیز در برابر جریان هوای ورودی به عنوان مشکلات اصلی فیلترها می باشد مقدار مقاومت در برابر هوای ورودی بر اساس سایز فیلتر ، مساحت فیلتر ، شکل فیلتر ، ساختار فیلتر متفاوت خواهد بود .
1توربولانس ( جریان گردابی ) هوای ورودی به فیلتر .
? پارچه کتان مخصوص چند لایه اشباع شده با روغن مخصوص.
?ذرات معلق مهار شده توسط فیلتر مقاومت چندانی تا 50000 مایل در برابر هوای ورودی ایجاد نخواهد نمود .
?ذرات روغن درون فیلتر مانند یک مخزن، آلایندگی ها را درخود نگه میدارد ، و با اینکار ظرفیت فیلتر را برای جذب آلایندگی ها بالا برده بدون آنکه باعث گرفتگی فیلتر گردند .
?مش فلزی که کتان فیلتر را در بر گرفته باعث می شود شکل ظاهری فیلتر به خوبی حفظ شده و از بوجود آمدن جریان گردابی نامطلوب بر روی فیلتر جلوگیری می نماید.
?با توجه به شکل چین های روی فیلتر، جریان هوای بدون توربولانس و فاقد آلایندگی با دبی بالاتر از فیلترهای معمولی که وارد سیستم تنفسی موتور می گردند .
Ari Flow in filter
یک کلمه راجع به عمل پالایش هوای ورودی :
یک مساله بسیار حساس در مورد خاصیت جذب ذرات معلق توسط فیلتر هوا وجود دارد که در هیچ راهنمای استفاده اتومبیل و کاتالوگ کمپانیهای فیلترسازی وجود ندارد ، این مساله راندمان پالایش فیلتر می باشد ، بر خلاف فیلترهای روغن و بنزین که گاهی اوقات بعضی از مطالب درباره راندمان و اهمیت کارآئی آنها بیان می شود ، متاسفانه درباره اهمیت راندمان فیلتر هوا مطالب بسیار کمی مطرح می گردد .
مطالعات انجام شده نشان داده است که بیشتر سایش و اصطکاک موتور خودرو توسط ذراتی به اندازه 10 تا 20 میکرون صورت می پذیرد .
این ذرات در صورتی وارد موتور می گردند که بتوانند از هر یک از فیلترهای ورودی برسر هوا و سوخت وارد موتور گردند .
فیلترهای K&N به خوبی از عهده این مهم بر می آیند .
درشرکت K&N فیلترهای مختلف تحت تست راندمان پالایش ( Efficiency Test Filtration) قرار می گیرند ، عدد به دست آمده عمدتاٌ بین 97 تا 98 درصد می باشد ، در بعضی از گونه های فیلتر این عدد به 99 درصد هم می رسد که این تعداد به نوع شکل و طراحی فیلتر ( از لحاظ شکل و چین های روی فیلتر) بستگی دارد این در حالیست که تمامی این فیلترها با قابلیت چنین محافظتی در برابر ذرات معلق ورودی وظیفه هوادهی به موتور را بهتر از هر فیلتر دیگری اجرا می کنند .
معمولاً ما بعضی از تبلیغات را با عنوان " جدید " در مورد بهبود کارآئی و افزایش مقدار پالایش بر روی بعضی از فیلترهای یکبار مصرف در بازار می بینیم در اکثر موارد این جملات با عدد دقیق راندمان پالایش فیلتر در تضاد می باشد ، در واقع این ادعا صرفاً در مورد افزایش ظرفیت نگهداری ذرات معلق فیلتر می باشد ، این یعنی فیلتر می تواند مقداربیشتری آلودگی را قبل از تعویض در خود نگه دارد.
در نظر داشته باشید فیلترهای K&N در طول مدت وارانتی خود تنها نیاز به شستشو و اشباع شدن به روغن با کیت مخصوص به خود را برای کارکرد مثل روز اول خود دارند .
ما همواره به مشتریان خود پیشنهاد می کنیم با مطالعه و افزایش اطلاعات خود، در هنگام خرید متوجه کیفیت و کارآئی خرید خود باشند .
جالب است بدانید تستهائی که ما خود بر روی فیلترها انجام داده ایم نشان دهنده اختلافات زیاد ما بین انواع فیلترهای موجود در بازار بود ، اکثر فیلترهای یکبار مصرف در بهترین شرایط به راندمان پالایش 93% دست پیدا می کردند انهم برای مدت کوتاه .
فکر می کنیم این اختلاف در مقدار راندمان پالایش و حساسیت موضوع نگهداری موتور یکی از دلایل خرید مشتریان ما باشد .
فیلتراسیون – یک برش عمیق و تشریح کارکرد فیلتر :
بیشتر مردم بر این تصورند که فیلتر هوا بر اساس " یا رد میشه یا نمیشه " کار می کند. یعنی فکر می کنند ذرات معلقی که بزرگتر از منفذهای کاغذ فیلتر هستند در فیلتر به دام می افتند و ذراتی که از سوراخهای فیلتر کوچکترند از آن رد می شوند. در واقع فیلترهای کاغذی معمولی به همین سبک کار می کنند مقاومت بسیار زیاد فیلترهای هوای معمولی در برابر عبور جریان هوا به همین دلیل می باشد ، منفذهای روی این فیلترها برای آنکه فیلتر راندمان پالایش قابل قبولی داشته باشد باید بسیار کوچک باشد .
کتانهای آغشته به روغن که در ساخت فیلترهای K&N بکار می روند به طریق کاملاً متفاوی عمل می کنند این فیلترها بر ا ساس یک سری از قواعد علمی به نحو جالبی ذرات معلق را از درون جریان گذرنده جدا کرده و در خود نگه می دارند .
قانون اول به نام قانون جداسازی (Interception) می باشد. در این قانون به جداسازی ذرات از جریان هوا اشاره می شود طبق این قانون جریان هوا همیشه کوتاهترین مسیر رابرای عبور انتخاب می کند و از آنجائیکه هوا برای عبور از اطراف الیاف کتان فیلتر تحت فشار می باشد در هنگام عبور هوا از میان این الیاف ذرات معلق با جداره های انها تماس پیدا کرده و توسط آنها گرفته می شوند ، سپس ذرات دستگیر شده توسط روغن در آنجا جذب و نگه داشته می شوند.
قانون دوم به قانون به هم فشردگی(Impaction ) که بیشتر روی ذرات معلق بزرگتر و سنگینتر اعمال می شود شناخته می گردد.
به هم فشردگی وقتی اتفاق می افتد که اینرسی جرمی ذرات معلق باعث انحراف آنها از مسیر جریان هوا شده و در واقع ذرات بزرگتر و سنگین دیگر از حرکت در مسیر جریان هوا تبعیت نکنند ، در آن هنگام این ذرات به جای عبور از میان الیاف کتان فیلتر به همراه جریان هوا مستقیماٌ به این الیاف برخورد کرده و توسط آنها به دام افتند .
مهمترین قانون مورد مصرف در این فیلترها قانون انتشار (Diffusion ) می باشد که در مورد قوانین فیزیکی حرکت ذرات بسیار کوچک بحث می کند که طی آن ذرات بسیار کوچک معلق در هوا تحت تأثیر نیروهای ناشی از جریان هوا قرار می گیرند .
نیروهائی مانند تغییرات سرعت ، تغییرات فشار ، توربولانس ناشی از ذرات دیگر و برخورد با مولکولهای هوا باعث حرکت تصادفی و بی نظمی این ذرات بسیار کوچک می شوند ، در نتیجه این ذرات ریز از جریان هوا برای حرکت پیروی می کنند و این حرکت بی نظم و مغشوش آنها باعث برخوردشان با الیاف فیلترو به دام افتادن آنها می شود .
این خاصیت باعث می شود که یک فیلتر هوا بتواند ذرات معلقی که بسیار کوچک تر از سوراخهای پارچه فیلتر می باشند را به خود جذب کند. به اضافه شیوه ای که در فیلترهای K&N برای جذب و نگهداری این ذرات معلق بسیار ریز وجود دارد بسیار متفاوت می باشد .
یک فیلتر کاغذی فقط می تواند جذب سطحی (Surface Loading ) که به معنی جذب ذرات فقط توسط سطح فیلتر می باشد را انجام دهد این در حالیست که الیاف فیلترهای K&N از چندین لایه تشکیل شده که این فیلتر را قادربه "جذب عمقی" (Depth Loading ) یعنی قابلیت جذب در لایه های مختلف در عمق فیلتر را به وجود می آورد .
این خاصیت فیلترهای K&N باعث می شود این فیلترها چندین برابر فیلترهای معمولی گنجایش جذب آلاینده ها را در هر اینچ مربع داشته باشند .
این سه قانون فیزیک و استفاده از آنها باعث می شود فیلترهای K&N با ساختار منحصر به فردش یک عبور آزاد کم مقاومت به همراه یک پالایش بسیار مطلوب را برای مصرف کننده به ارمغان بیاورد .
نتایج یک آزمایشگاه مستقل :
در راستای شفاف سازی قابلیت فیلتر K&N برای محافظت از موتور خودروی شما ، ما فیلترهای خود را در یک آزمایشگاه مستقل و جدا از متعصبات کارخانه خود مورد تست قرار داده ایم پروسه تست براساس استاندارد SAE J726 فیلتر هوا متعلق به انجمن مهندسین خودروی آمریکا انجام می شود ، اخیراٌ تست فیلتر هوا بر اساس استاندارد بین المللی ISO 5011 که جایگزین استاندارد قبلی شده است صورت می پذیرد .
91/1/31
3:9 ع
شیمی نفت
تاریخچه :
این ماده را از قرنها پیش بصورت گاز در آتشکده و یا به فرم قیر (کاده ای که پس از تبخیر مواد فرار یا سبک نفت از آن باقی میماند) میشناختهاند یا بطوری که در کتب مقدس و تاریخی اشاره شده است که در ساختمان برج بابل از قیر استفاده گردیده و کشتی نوح و گهواره موسی نیز به قیر اندوده بوده است. بابلیها از قیر بعنوان ماده قابل احتراق در چراغها و تهیه ساروج جهت غیر قابل نفوذ نمودن سدها و بالاخره جهت استحکام جادهها استفاده میکردهاند.
مدت زمان مدیدی ، مورد استعمال نفت فقط برای مصارف خانگی و یا به عنوان چربکنندهها بود، اما از آغاز قرن شانزدهم میلادی روز به روز موارد استعمال آن رو به افزایش نهاد تا اینکه در سال 1854 دو نفر داروساز وجود یک فراکسیون سبک قابل اشتعال را در روغن زمینی تشخیص دادند و همچنین به کمک تقطیر ، مواد دیگری بدست آوردند که برای ایجاد روشنایی بکار میرفت. بر اساس این کار آزمایشگاهی بود که بعدا دستگاههای عظیم تصفیه نفت طرحریزی و مورد بهره برداری قرار گرفت. صنعت نفت در آتازونی در سال 1859 شروع شد.
تاریخچه استخراج نفت در ایران :
صنعت نفت ایران نیز از سال 1908 پس از هفت سال تفحص مکتشفین و کشف نفت در مسجدسلیمان واقع در دامنه جبال زاگرس ، پا به عرصه وجود گذاشت.
نفت خام :
امروزه چاههای نفت متعددی در سراسر جهان وجود دارد که از آنها نفت استخراج میکنند و به نفتی که از چاه بیرون کشیده میشود، نفت خام میگویند. نفت خام را تصفیه میکنند، یعنی هیدروکربنهای گوناگونی را که نفت خام از آنها تشکیل شده است از یکدیگر جدا میکنند که به این کار پالایش نفت میگویند و در پالایشگاهها این کار انجام میشود. نفت منبع انرژی و سرچشمه مواد اولیه بسیاری از ترکیبات شیمیایی است و این دور از عوامل اصلی اقتصادی مدرن بشمار میرود. در صنایع جدید از ثروت بیکران و تغییر و تبدیل مواد خام اولیه آن بیاندازه استفاده میشود.
تشکیل نفت :
نحوه پیدایش نفت دقیقا تشخیص داده نشده و در این مورد فرضیات گوناگونی پیشنهاد شده است. برخی از این تئوریها ، مربوط به مواد معدنی و بعضی دیگر مربوط به ترکیبات آلی میباشد.
تشکیل نفت از مواد معدنی :
اساس این فرضیه بر این است که کربورهای فلزی تشکیل شده در اعماق زمین در اثر تماس با آبهایی که در زمین نفوذ مینماید، ابتدا ایجاد هیدروکربورهای استیلنی با رشته زنجیر کوتاه میکند. سپس هیدروکربورهای حاصل در اثر تراکم و پلیمریزه شدن ایجاد ترکیبات پیچیده و کمپلکس را می نماید که اغلب آنها اشباع شده است.
تشکیل نفت از مواد آلی :
بر اساس این فرضیه تشکیل نفت را در اثر تجزیه بدن حیوانات در مجاورت آب و دور از هوا میدانند. زیرا در این شرایط ، قسمت اعظم مواد ازته و گوگردی تخریب و مواد چرب باقیمانده در اثر آب ، هیدرولیز میگردد. اسیدهای چرب حاصله ، تحت اثر فشار و درجه حرارت با از دست دادن عوامل اسیدی تولید هیدروکربورهائی با یک اتم کربن کمتر مینماید.
"انگلر Engler" از تقطیر حیوانات دریائی توانسته است مواد نفتی را تهیه نماید و با توجه به خاصیت "چرخش نوری" مواد نفتی که علت آن وجود گلسترین است (ماده ای که در بدن حیوانات وجود دارد) این فرضیه بیان و مورد تایید شده است. در صورتی که فرضیه های دیگر که مبتنی بر اساس مواد معدنی در تشکیل نفت میباشد، هیچگونه توضیح و دلیل قانع کننده ای در مورد این ویژگی نمیتواند بیان نماید.
همچنین نفت میتواند از تجزیه گیاهان تولید گردد. در این حالت ، خاصیت چرخش نور را به علت وجود ترکیب مشابه گلسترین یعنی پلی استرولها میدانند."مرازک Mrazec" ، میکروبها را در این تغییر و تبدیل موثر میداند. تئوری تشکیل نفت بر مبنای مواد آلی ، فعلا بیشتر مورد قبول میباشد و اختلاف قابل ملاحظهای را که بین ژیزمانها (منابع نفتی) مشاهده میگردد، بعلت شرایط و عوامل مختلف تشیکل ژیزمانها میدانند.
مواد سازنده نفت خام :
مواد سازنده نفت از نظر نوع هیدروکربور و همچنین از نظر نوع ترکیبات هترواتم دار بستگی به محل و شرایط تشکیل آن دارد. بنابراین مقدار درصد مواد سازنده نفت خام در یک منبع نسبت به منبع دیگر تغییر میکند. بطور کلی مواد سازنده نفت شامل: هیدروکربورها- ترکیبات اکسیژنه - سولفوره - ازته و مواد معدنی میباشد.
خواص نفت خام
گرانی :
چگالی نفتهای خام را بیشتر بر حسب درجه A.P.I به جای گرانی ویژه (چگالی نسبی) بیان میکنند. ارتباط بین این دو ، به گونه ای است که افزایش گرانی API با کاهش گرانی ویژه مطابقت میکند. گرانی نفت خام میتواند بین پایینتر از 10API تا بالاتر از 50API قرار بگیرد، ولی گرانی اکثر نفتهای خام در گستره بین 20 تا 45API قرار دارد. گرانی API همواره به نمونه مایع در 60 درجه فارینهایت اشاره دارد.
مقدار گوگرد :
مقدار گوگرد و گرانی API دو خاصیتی هستند که بیشترین اثر را به ارزشگذاری نفت خام دارند. مقدار گوگرد بر حسب درصد وزنی گوگرد بیان میشود و بین 0,1 در صد تا 5 درصد تغییر میکند. نفتهایی که بیش از 0,5 درصد گوگرد دارند، در مقایسه با نفتهای کمگوگردتر ، معمولا محتاج فراورشهای گستردهتری هستند.
نقطه ریزش :
نقطه ریزش نفت خام بر حسب F? یا c? معرف تقریبی پارافینی بودن یا آروماتیکی بودن نسبی آن است. هرچه نقطه ریزش پایینتر باشد، مقدار پارافین کمتر و مقدار آروماتیک بیشتر است.
حلالیت :
قابلیت انحلال هیدروکربورها در آب عموما خیلی کم میباشد. مقدار آب موجود در هیدروکربورها با افزایش درجه حرارت زیاد میشود. حلالیت هیدروکربورها در کلروفرم ، سولفورکربن و تتراکلریدکربن حائز اهمیت است که با افزایش درجه حرارت ، زیاد و با افزایش وزن مولکولی کاسته میگردد. قابلیت انحلال آروماتیکها بیشتر بوده و بعد از آنها اولفینها - نفتنها - متانیها قرار دارد. ضمنا قابلیت انحلال ترکیبات اکسیژنه - ازته - سولفوره ، کمتر از هیدروکربورها میباشد. بالاخره نفت ، حلال هیدروکربورهای گازیشکل و تقریبا تمام هیدرورکربورهای جامد - گریسها - رزینها - گوگرد و ید میباشد.
نقطه جوش :
نقطه جوش هیدروکربورهای خالص با وزن مولکولی و همچنین برای سریهای مختلف با تعداد مساوی اتم کربن بترتیب از هیدروکربورهای اشباعشده به اولفینها - نفتنها و آروماتیکها افزایش مییابد. بدین ترتیب نقطه جوش هیدروکربورهای اشباع شده و اولفینها از همه کمتر و سیکلوآلکانها و آروماتیکها از سایرین بیشتر میباشد. برای برشهای نفتی که مخلوطی از هیدروکربورهای مختلف میباشند، یک نقطه جوش ابتدائی و یک نقطه جوش انتهایی در نظر گرفته میشود و حد فاصل بین این دو نقطه برای یک برش به نوع مواد سازنده اغلب زیاد و متغیر میباشد که به این حد فاصل بین دو نقطه "گستره تقطیر" گفته میشود.
گرمای نهان تبخیر :
گرمای نهان تبخیر در یک سری همولوگ از هیدروکربنها بترتیب از مواد سبک به سنگین کاهش مییابد و همچنین مقدار آن از یک سری به سری دیگر ، مثلا بترتیب از آروماتیکها به نفتنها و هیدروکربورهای اشباع شده نقصان مییابد. بنابراین گرمای نهان تبخیر با دانسیته فراکسیون مربوط بستگی دارد.
قدرت حرارتی :
قدرت حرارتی عبارت از مقدار کالری است که از سوختن یک گرم ماده حاصل میشود. قدرت حرارتی هیدروکربورها به ساختمان مولکولی آنها و قدرت حرارتی یک برش نفتی به نوع و مواد سازنده آن سبتگی دارد. قدرت حرارتی متان بیشتر از سایر هیدروکربورها و برابر با 13310 کیلوکالری به ازای یک کیلوگرم میباشد و مواد سنگین حاصله از نفت خام دارای قدرت حرارتی در حدود 10000 کیلو کالری میباشد.
اثر اسید نیتریک :
هیدروکربورها در اثر اسید نیتریک به ترکیبات نیتره یا پلینیتره تبدیل میشود. نیتراسیون برخی از مواد نفتی منجر به تهیه ترکیبات منفجره یا مواد رنگین میگردد. موارد استعمال برخی از برش های نفتی بدست آمده از نفت خام
شیرین کردن آب دریا :
یکی از موارد استعمال گازهای نفتی در صنایع وابسته به پالایشگاهها تهیه آب شیرین از آب شور میباشد.
به عنوان سوخت :
از جمله ، بنزین برای سوخت موتورهای مختلف ، کروزون سوخت اغلب تراکتورها و ماشینهای مورد استفاده در کشاورزی و همچنین موتورهای جت هواپیماها اغلب از کروزون یا نفت سفید میباشد، گازوئیل که موتورهای دیزل بعنوان سوخت از نفت گاز (گازوئیل) استفاده مینمایند، نفت کوره یا مازوت یک جسم قابل احتراق با قدرت حرارتی 10500 کالری بوده که بخوبی میتواند جانشین زغال سنگ گردد و سوختن آن تقریبا بدون دود انجام میگیرد.
روشنایی :
از کروزون جهت روشنایی و همچنین برای علامت دادن به کمک آتش استفاده میشود، چون نقطه اشتعال کروزون بالاتر از 35 درجه است، لذا از نظر آتشسوزی خطری ندارد.
حلال :
از هیدروکربورهای C4 تا C10 میتوان برشهائی با دانسیته و نقاط جوش ابتدائی و انتهایی متفاوت تهیه نمود که مورد استعمال آنها اغلب بعنوان حلال میباشد. بعنوان مثال ، اتر نفت یک حلال سبک با نقطه جوش 75-30 درجه سانتیگراد و وایت اسپیریت (حلال سنگین) که از تقطیر بنزین بدست میآید بعنوان حلال ، رنگهای نقاشی و ورنی ها استفاده میگردد. همچنین برای تمیز کردن الیاف گیاهی و حیوانی و یا سطح فلزات از برشهای خیلی فرار (تقطیر شده قبل از 110 درجه سانتیگراد) استفاده میشود.
91/1/31
3:7 ع
مقدمه
لوله حفاری(Drill Pipe) مهمترین قسمت از ساق یا رشته حفاری است که عمل انتقال حرکت به مته را انجام می دهد.
علاوه بر لوله های حفاری لوله های وزنه (Drill collar) نیز در انتهای ساق یا رشته حفاری قرار می گیرند که وزن لازم روی مته را تامین می کنند و همچنین باعث کشیدگی رشته لوله های حفاری میشود.
همچنین طوفه های (Subs) مختلف در رشته حفاری وظایف خاصی برعهده دارند. در زیر به طور مختصر راجع به علامت گذاری وشناسایی لوله های حفاری و وزنه صحبت شده است.
عکسی از لوله های حفاری و لوله های وزنه در جلو آنها چیده شده.
لولة حفاری
لوله های حفاری از دو قسمت تیوب و ابزار پیوند تشکیل شده اند.
تیوب لوله حفاری توسط اندازه قطر بیرونی آن, اندازه وزن- پوند (lbf) بر واحد طول- فوت (ft) و درجه شرح داده می شود .
برای مثال برای لوله 2/1-4 - 16.6 - E قطر بیرونی تیوب به اندازه 2/1-4 in است.
فهرست علائم :
مشروح :
قطر بیرونی اسمی : 2/1-4
وزن برفوت اسمی : 16.6
( وزن ابزارهای پیوند را شامل نمی شود چرا که در آن حالت « وزن تنظیم شده » نامیده می شود و در محاسبات طراحی استفاده می شود )
E = درجه ، که نشاندهنده استحکام تسلیم تیوب می باشد.
طبقه بندی بر اساس کلاس لوله :
لوله های حفاری بر اساس طول مدت کارکرد پس از مدتی فرسوده شده و ضخامت دیواره آنها تغییر می کند چون قیمت هر شاخه لوله حفاری بسیار بالاست آنها را براساس ضخامت لوله کلاسه بندی کرده و مشخص می کنند.
ضخامت لوله کلاس برتر از ضخامت لوله جدید تا ضخامت لوله ای که ضخامت باقی مانده آن از 80 درصد لوله اصلی کمتر نشده باشد را شامل میشود.
کلاس 2ـ حدودش از کاهش 80 درصد کلاس برتر تا کوچکتر نبودن از 70 درصد ضخامت لوله اصلی می باشد .
کلاس 3 ـ عیبها یا ضایعات ضخامت دیواره هنگامی که فراتر از کلاس 2 باشد را پوشش می دهد .
کلاس برتر در محل استفاده با دو نوار سفید رنگ ، کلاس 2 با یک نوار زرد و کلاس 3 با یک نوار نارنجی شناخته می شوند . بطوریکه این کدگذاری رنگی موجب شده است که گاهی اوقات لوله کلاس 2 بعنوان مثال به نام لوله زرد و همین طور کلاس برتر به لوله سفید شناخته شود.
قسمت دیگری از فهرست علائم و اختصارات که می تواند به واژه های لوله حفاری اضافه شود فهمیدن باز هم بیشتر درمورد مشخصات و صفات ممیزه فیزیکی آن می باشد. چنانکه درابتدا توضیح داده شد ، E در تعریف منسوب می شود به درجه تیوب ، که در حقیقت « استحکام تسلیم » تیوب است. همه لوله های حفاری یک درجه بندی ازیکی از درجات G , X , E یا S دارند.
اندازه ضخامت دیواره اسمی به همراه درجه سختی لوله ها تعیین کننده مقادیر استحکام نسبی طراحی مهندسی است. به عنوان مثال یک اتصال 4 1/2-16.6-E کلاس ممتاز استحکام کششی بمراتب کوچکتری از یک اتصال 2/1-4-20.0-S کلاس ممتاز دارد.
برجستگی لوله حفاری(Upset) قسمت انتهای لوله است که جهت اتصال به قسمت ابزار پیوند لوله حفاری مقداری ضخیمتر ساخته می شود این برجستگی می تواند به صورت در داخل لوله یا قسمت خارج لوله باشد.
در تشریح مشخصات یک اتصال لوله ، اضافه کردن مشخصات برجستگی لوله به تشریح مفصل تر مطابق با علامت گذاری ذیل می انجامد :
1/2-4 -16.6 - E - I.E.U - Premium class
که نشان دهنده یک اتصال لوله کلاس ممتاز با قطر بیرونی4 -1/2 اینچ ، با وزن اسمی 16.6 پاند بر فوت ، ضخامت دیواره0/337 الی 0/270 اینچ و استحکام تسلیم 75,000 پام و با برجستگی داخلی ـ خارجی است. طول طبیعی قابل قبول اتصال لوله 30-/+ فوت می باشد. یک اتصال لوله با طول بین27 تا30 فوت ، اتصال رتبه II نامیده میشود. بیشتر دستگاه های حفاری برای کار با یک ، دو یا سه اتصال رتبه II ، که تشکیل یک لوله حفاری (Stand) را می دهند ، طراحی شده اند.
در مقابل ، طول لوله جداری معمولا بین 38 الی 45 فوت می باشد که رتبهIII نامیده می شود. اکنون می دانیم طریقه نمایش اطلاعات یک اتصال لوله به شکل ذیل است:
1/2-4 -16.6 - E - I.E.U - Premium class - Range II
ابزار های پیوند (Tool joint)
ابزار های پیوند قسمتهای رزوه شده انتهای لوله حفاری هستند که برای اتصال دو یا چند لوله حفاری به یکدیگر در انتهای تیوب با جوشکاری خیلی خاص اصطکاکی متصل میشوند. ابزارهای پیوند توسط مشخصات قسمت رزوه شده آنها نامگذاری می شوند.API ابزارهای پیوند را طبقه بندی کرده و نامگذاری خاصی به آنها اختصاص داده است که شامل حروف NC -Numbered Connection به معنی اتصال شماره گذاری شده ، و مقدار عددی بعد از آن است. برای اتصال4 1/2-16.6-E لوله حفاری نیازمند یک پیوند پذیرفته شده معمول آن NC 46 می باشد. در گذشته در طی مراحل پیشرفت و گسترش لوله های حفاری و ابزارهای پیوند شماره NC 46 به ابزار پیوند 2/1-4 - X H نسبت داده می شد. 2/1-4 اندازه لوله را مشخص می کرد که ابزار پیوند به آن متصل می شد و XHهم نوع یا شیوه برجستگی لوله را شرح می داد. پس از آن زمان 2/1-4 - XH کنار گذاشته شد و به جای آن NC46 جایگزین شد. همچنین در طی آن پیشرفت شکل رزوه اندکی اصلاح پیدا کرد که سبب تغییر نام شد.
ابزارهای پیوند همچنین بدلیل اینکه از قطر بیرونی بواسطه فرسودگی و سائیدگی کاسته می شود در کلاس هایی دسته بندی می شوند. از آنجائیکه قطر بیرونی و درونی با ابعاد گوناگونی ساخته می شوند (سعی می شود تا استحکام پیچشی ابزار پیوند با تیوب یکی باشد). عموماً گفته می شود استحکام کششی ابزار پیوند دو برابر تیوب لوله حفاری است و در محاسبات طراحی رشته حفاری مطرح نمی گردد. هر چند ، گشتاور اتصال لوله ها بعنوان ملاحظات طراحی باید مد نظر قرار داشته باشد.
نمونه معرفی کامل اتصال لوله حفاری عبارت است از :
1/2-4 -16.6 - E - I.E.U – NC 46 - Range II - Premium class
این فهرست علائم و اختصارات مشخصات ابعادی لوله حفاری و ابزارهای پیوند را شرح می دهد و در محاسبات و طراحی های رشته حفاری به آن رجوع خواهد شد.
لوله های وزین حفاری :
شکل لوله وزنه به همراه مته
لوله های وزین حفاری در رشته حفاری برای اعمال فشار به مته استفاده می شوند. طول لوله وزین حفاری بطور طبیعی +/ –30فوت است ، درست مشابه لوله حفاری. بعضی از انواع مختلف لوله های وزین حفاری که مورد استفاده قرار می گیرند. لوله های وزین حفاری مونل هستند که غیر مغناطیسی بوده و برای بدست آوردن برآوردهای هدایتی در حفر چاه های کج استفاده می شوند ؛ لوله های وزین حفاری کوتاه که طولشان کوچکتر از30 فوت می باشد و برای کمک به ثابت نگهداشتن تراشنده ها ، پایدارکننده ها ، IBS و غیرو در مجموعه ته چاهی استفاده می شوند و لوله های وزین ته چاه که در هر انتهایشان اتصال مادینه دارند و به مته متصل می شوند. لوله های وزین حفاری به وسیله نوع رزوه های اتصال و قطر بیرونیشان مشخص می شوند. به عبارت دیگر یک لوله وزین حفاری با قطر بیرونی 8 اینچ و رزوه های اتصال6 5/8 - Reg بعنوان لوله وزین 8 in – 6 5/8 شناخته می شود.اندازه 8 اینچ تنها به قطر بیرونی اسمی نسبت داده می شود و جاهایی را شامل نمی شود که تنگه های مانده یابی قرار دارند یا در اثر فشار تورفتگی ایجاد شده است. بازرسی اولیه لوله های وزین حفاری در محل کار تنها بر روی قسمت پیوند اتصال آنها انجام می شود و در مورد لوله های وزین به مانند ابزارهای پیوند طبقه بندی و کلاس خاصی وجود ندارد. آنها یا پذیرفته می شوند و یا رد می شوند. بطور کلی رزوه ها با مقطع استاندارد تطبیق داده می شوند و سپس ترک ها و شکستگیها با رنگ سیاه آشکار می شوند. شانه ها و وجوه آنها از لحاظ سائیدگی ها و تورفتیگی ها بررسی می شوند. اگر عیوبی پیدا شوند که نتوان آنها را تعمیر کرد ، اتصال رنگ قرمز می خورد و رد می شود.
91/1/26
10:37 ص
91/1/26
10:35 ص
91/1/23
11:18 ص
مشتقات غیر هیدروکربنی نفت
مشتقات غیر هیدروکربنی نفت خام ، معمولا شامل ترکیبات گوگرددار ، اکسیژندار و ازتدار میباشد. نوع این مشتقات در نفت خام در نوع خود پالایش نفت نیز موثر میباشد. درصد این ترکیبات در نفت زیاد نیست. ترکیبات اکسیژندار و گوگرددار ، تقریبا 2% نفت خام را شامل میشود. البته این درصد قابل تغییر است. این ترکیبات ، بیشتر در برشهای سنگین یافت میشوند و بنابراین حائز اهمیت میباشند.
ترکیبات گوگرددار
عملا کلیه نفتهای شناخته شده ، دارای گوگرد هستند. نفتهای بدست آمده از آمریکای جنوبی و خاورمیانه و خاور نزدیک بطور متوسط دارای گوگرد بیشتری است. در نفتهای خام ایران، در حد گوگرد استخراج شده از 1،22% در نفت هفت گل تا 2،46% در نفت خارک تغییر مینماید. نفتهای اروپای شرقی ، خاور دور ، هند ، پاکستان و برمه بطور متوسط از نفتهای خام سایر نقاط ، کم گوگردتر است.
نسبت درصد گوگرد زیاد در اکثر فرآوردههای نفتی ، مضر است و حذف یا تبدیل آنها به مواد بی ضرر ، قسمتهای مهم کار پالایشگاهها را تشکیل میدهد. وجود ترکیبات گوگردی در بنزین ، به علت خورندگی که در قسمتهای موتور ایجاد مینماید، مضر تشخیص داده شده است و مخصوصا در شرایط زمستانی به علت جمع شدن SO2 محلول در آب که در نتیجه احتراق بدست می آید، در محوطه میل لنگ موجب خورندگی بسیار میشود. به علاوه هرکاپتانهای محلول در مواد نفتی ، مستقیما در مجاورت هوا موجب خورندگی مس و برنج میشود. هرکاپتانها همچنین تاثیر نامطلوبی روی حساسیت سرب و ثبات رنگ فرآوردهها دارد. گوگرد آزاد در صورتی که وجود داشته باشد، خورنده است. سولفورها ، دیسولفورها و تیوفنها ، کمتر خورنده هستند؛ اما موجب کم شدن عدد اکتان در مجاورت تترااتیل سرب میشوند.
قسمت اعظم SH2 در موقع تقطیر نفت در درجات حرارت 330 و 400 درجه فارنهایت از نفت خارج میشود.
ترکیبات اکسیژندار
این ترکیبات 2% ترکیبات نفتی را شامل میشوند و تا 8% افزایش مییابند. برخلاف ترکیبات گوگردار ، ترکیبات اکسیژندار مانند اسیدهای نفتنیک ، در صنعت کاربرد دارند. از نظر اینکه اولین اسیدهای حاصله از نفت ، از مشتقات مونوسیکلوپارافی نها (نفتنها) بودهاند، آنها را اسیدهای نفتنیک نام نهادهاند. علاوه بر اسیدهای نفتنیک ، اسیدهای آلیفاتیک نیز در نفت دیده شدهاند. وجود فنلها در چکیدههای کراکینگ ثابت شده و مقدار ناچیزی نیز در بنزین خام مشاهده شده است. به این جهت به نظر میرسد که فنلها در نفت خام وجود داشته باشند. به جز اسیدهای نفتنیک و ترکیبات فنلی ، استرها ، انیدریدها ، الکلها و ستنها و آلدئیدها در نفت مشاهده شدهاند.
تهیه اسیدهای نفتنیک از نفت ، اهمیت تجارتی پیدا کرده و تولید سالانه به شدت افزایش یافته است. این اسیدها به شکل املاح فلزی خود مصرف میشوند. نفتناتهای سرب اهمیت زیادی دارند؛ زیرا به عنوان روغنهای مقاوم (در برابر فشار) و خشک کننده رنگها همراه با نفتنناتهای کبالت و منگنز مصرف میشوند. نفتناتهای مس به عنوان محافظ چوب و در ساختمان رنگهای مختلف مورد استفاده قرار میگیرند. املاح دیگر در گریسها به منظور تهیه گریس مقاوم در مقابل اکسیژن مصرف میشوند.
ترکیبات نیتروژندار یا ازتدار
ترکیبات نیتروژندار ، 50% ترکیبات نفت را شامل میشوند. (نیتروژن به عنون عامل مسموم کننده کاتالیست در شکستن کاتالسیتها میباشد.) در بعضی از نفتها ، نیتروژن وجود ندارد. با وجود مقدار کم ازت در نفت این درصد اهمیت زیادی در پالایشگاهها پیدا میکند، زیرا ترکیبات نیتروژندار را عامل اصلی مسموم کننده کاتالیزور در دستگاههای کراکینگ کاتالسیتی میدانند و نیز تشکیل صمغ را در موقع استفاده از بعضی فرآوردهها از قبیل سوختها ، به ترکیبات ازتدار نسبت میدهند.
ترکیبات ازتدار نفت را به دو گروه قلیایی و قلیایی خاکی تقسیم کردهاند. این تقسیم بندی ، بر مبنای قابلیت ترکیب این مواد با محلول اسید پرکلریک و اسید استیک قرار دارد. از ترکیبات ازتدار موجود در چکیدههای حاصل از دستگاه تقطیر ، 25 الی 35 درصد جزو گروه قلیایی است. ترکیبات ازتدار گروه قلیایی به سادگی از نفت جدا میشوند و به این سبب تحقیقات زیادی روی آنها صورت گرفته است. مشتقات پیریدین و کینولین تنها ترکیبات ازتدار گروه قلیایی است که در محصولات سبک حاصل از دستگاه کراکینگ وجود دارد. از گروه قلیایی میتوانیم از پیریدینها ، کینولینها ، آمینها ، اندولینها و هگزا هیدرو کربازولها نام ببریم. از گروههای غیر قلیایی میتوانیم از پیرولها ، اندولها و کربازولها نام ببریم.
ترکیبات فلزدار
در نفت ، علاوه بر ترکیبات مذکور ترکیبات فلزدار هم وجود دارد. در شیمی آلی با این عملکرد روبرو هستیم که برای مطالعه وجود ترکیبات معدنی در ترکیبات آلی معمولا از خاکستر ترکیبات آلی استفاده میشود. در مورد ترکیبات نفتی نیز خاکستر آنها استفاده میشود.
مقدار خاکستر یک نفت خام معمولی در حدود 0/01 تا 0/05 درصد وزنی میباشد. گر چه بعضی از ترکیبات فلزدار ممکن است واقعا مواد محلول در نفت باشد، اما قسمت اعظم آن را موادی تشکیل میدهد که یا در آبهای معلق در نفت خام محلول هستند و یا مربوط به مواد جامد معدنیاند که به شکل ذرات ریز در نفت خام پراکنده است. نتیجه تجزیه تعدادی از نفت خامهای مختلف ، وجود ترکیبات وانادیم (233ppm) ، نیکل (97ppm) ، آهن (31ppm) ، مس (1/1ppm) ، روی ، کلسیم ، منیزیم ، سرب و … را ثابت نموده است.