91/2/28
10:56 ص
انتقال گرما به وسیله نانوسیالات
خلاصه :
تحقیقات اخیر روی نانوسیالات، افزایش قابل توجهی را در هدایت حرارتی آنها نسبت به سیالات بدون نانوذرات و یا همراه با ذرات بزرگتر (ماکرو ذرات) نشان میدهد. از دیگر تفاوتهای این نوع سیالات، تابعیت شدید هدایت حرارتی از دما، همچنین افزایش فوقالعادة فلاکس حرارتی بحرانی در انتقال حرارت جوشش آنهاست. نتایج آزمایشگاهی به دست آمده از نانوسیالات نتایج قابل بحثی است که به عنوان مثال میتوان به انطباق نداشتن افزایش هدایت حرارتی با تئوریهای موجود اشاره کرد
چکیده |
|||
2. تهیه نانوسیالات |
|||
3. انتقال حرارت در سیالات ساکن بیشترین تحقیقات روی هدایت حرارتی نانوسیالات، در زمینه سیالات حاوی نانوذرات اکسید فلزی انجام شده است [18]. [23]. |
|
||
|
|||
|
|||
ژوان ولی [32] ضریب انتقال حرارت جابهجایی اجباری در جریان آشفته را نیز اندازه گرفتند و نشان دادند که مقدار کمی از نانوذرات مس در آب دیونیزه شده، ضریب انتقال حرارت را به صورت قابل توجهی افزایش میدهد، به طور مثال افزودن دو درصد حجمی از نانوذرات مس به آب، حدود 39 درصد انتقال حرارت آن را افزایش میدهد. در حالی که در تناقض با نتایج بالا، پکوچو [35] کاهش 12درصدی ضریب انتقال حرارت را در سوسپانسیون حاوی سه درصد حجمی از آلومینا و تیتانا در همان شرایط مشاهده کردند. پوترا [28] با کار روی جابجائی آزاد، بر خلاف هدایت و جابهجایی اجباری، کاهش انتقال حرارت را مشاهده کرد. داس با [17] انجام آزمایشهای جوشش روی آلومینا- آب نشان داد که با افزایش درصد حجمی نانوذرات، بازدهی جوشش نسبت به سیال پایه کم میشود. وی این کاهش را به تغییر خواص سطحی بویلر به علت تهنشینی نانوذرات روی سطح ناهموار آن نسبت داد، نه به تغییر خواص سیال. یو [6] با اندازهگیری فلاکس حرارتی بحرانی برای جوشش روی سطوح تخت و مربعی مس که در نانوسیال آب- آلومینا غوطهور بودند، نشان داد که فلاکس حرارتی این سیالات سه برابر آب است و اندازه متوسط حباب، افزایش و فرکانس تولید آنها کاهش مییابد. این نتایج را واسالو [7] نیز تأیید کرد. وی روی نانوسیال آب - سیلیکا کار میکرد و افزایش فلاکس حرارت بحرانی را برای غلظتهای کمتر از یکهزارم درصد حجمی گزارش کرد. هنوز مدلی برای پیشبینی این افزایشها و فاکتورهای مؤثر بر آن وجود ندارد. |
91/1/31
3:28 ع
کروژن چیست ؟
کروژنها مواد آلی رسوبی شکنندهای هستند که در حلالهای مواد آلی غیرمحلول هستند و دارای ساختمان پلیمری میباشند. مواد آلی شکنندهای که در حلالهای آلی محلول باشند، بیتومن نامیده میشوند. ولی کروژنها را میتوان توسط اسیدهایی مانند hcl و hf از سنگهای رسوبی باز پس گرفت. همچنین ممکن است توسط روش دانسیته و استفاده از مایعات سنگین بتوان کروژن را جد اساخت. چون کروژن نسبت به کانیهای دیگر سبک بوده و وزن مخصوص کمتری دارد.
روشهای مطالعه کروژن
تمرکز کروژن بوجود آمده را میتوان با میکروسکوپهای با نور عبوری یا انعکاسی مورد بررسی قرار داد و هویت بیولوژیکی و منشا و نحوه بوجود آمدن اولیه آنها را مطالعه نمود. همچنین با استفاده از میکروسکوپهای با نور ماورای بنفش و مشاهده کردن رنگهای فلورسانس ، اجزا اصلی تشکیل دهنده کروژنها را مشخص ساخت و از اسپکتروسکوپهای مادون قرمز نیز جهت بررسی ترکیب شیمیایی و ساختمانی کروژنها کمک گرفت.
تجزیه کروژن
مولکولهای بزرگ و پیچیده کروژن به سختی قابل تجزیه بوده ولی در اثرحرارت دادن در اتمسفر به ذرات کوچکتری شکسته میشوند که بعدا آنها را میتوان توسط دستگاههای کروماتوگرافی گازی و اسپکترومترهای جرمی تجزیه نمود.
تغییرشکل کروژنهای مدفون در اثر افزایش حرارت تبدیل کروژنها به نفت و گاز فرایندی است که به درجه حرارت بالایی نیازمند است. برای شروع تبدیل مواد حیوانی و گیاهی آلی به هیدروکربنها درزیرفشار 1-2 کیلومتر رسوب ، حرارتی درحدود 70-50 درجه سانتیگراد لازم است. درجه حرارت نهایی برای این تبدیل که بلوغ یا مچوراسیون نامیده میشود. حتی به بیش از 150 درجه سانتیگراد میرسد. لازم به ذکر است که در نواحی با گرادیان زمین گرمایی بیشتر ، به عنوان مثال نواحی با جریان حرارتی بالا ، امکان دارد مواد آلی درعمق کمتری به درجه بلوغ (مچوریتی) برسند.
تاثیر فشار بر ساختمان کروژنها
با افزایش حرارت در اثر افزایش بار رسوبی فوقانی عاملهای باندی c- c مولکولهای آلی موجود در کروژن شکسته میشوند و گاز نیز در این مرحله تشکیل میشود. بنابراین با بالا رفتن حرارت همگام با افزایش فشار ، باندهای c- c بیشتری در کروژن و مولکولهای هیدروکربنی که قبلا تشکیل شده بودند، شکسته میشود. این شکستگی راهنمایی برای تشکیل هیدروکربنهای سبک تر ، از زنجیرههای هیدروکربنی طویل و از کروژن است. جدا شدن متان و دیگر هیدروکربنها سبب میشود که کروژن باقیمانده نسبتا از کربن غنی شود. زیرا در آغاز ، کروژنهای تیپ 1و 2 نسبت h/c برابر 1.7 و 1.3 دارند.
دیاژنز کروژن
شروع دیاژنز با درجه حرارت 70-60 صورت میگیرد و ازدیاد درجه حرارت تا زمانی که نسبت h/c =0.6 و نسبت o/c =0.1 باشد تا حدود 150 درجه سانتیگراد ادامه مییابد. در درجه حرارتهای بیشتر تمام زنجیرههای هیدروکربنی طویل تقریبا شکسته میشوند و بنابراین باقیمانده آن بطور کلی تنها از گاز متان (گازخشک) میباشد و ترکیب کروژن تدریجا به سمت کربن خالص میل خواهدکرد. ( h/c=0 )
محاسبه مچوریتی
محاسبه مچوریتی (به بلوغ رسیدن) سنگ مادر برای پیشگویی اینکه چه سنگهای مادری برای تولید نفت بقدر کافی رسیده هستند و همچنین جهت محاسبه کامپیوتری و طرح ریزی بکار میرود که اینها یک قسمت مهم از آنالیز حوضه برای اکتشافات نفت میباشند و مهمترین بهره از این محاسبات تعیین تاریخچه فرونشینی است که از ثبت چینه شناسی و تخمین گرادیان زمین گرمایی مشتق میشود. بنابراین تاریخچه فرونشینی تابعی از زمان زمین شناسی میباشد.
انواع کروژن
بطور کلی سه نوع کروژن قابل تشخیص است. وجه تمایز این سه نوع کروژن به نوع ماده آلی تشکیل دهنده و ترکیب شیمیایی آن بستگی دارد.
کروژن نوع اول :
این نوع کروژن دارای منشا جلبکی بوده و نسبت هیدروژن به کربن موجود در آن از سایر کروژنها بیشتر میباشد ( نسبت هیدروژن به کربن حدود 1.2 تا 1.7 است ).
کروژن نوع دوم :
کروژن نوع دوم یا لیپتینیکها نوع حد واسط کروژن محسوب میشود. نسبیت هیدروژن به کربن نوع دوم ، بیش از 1 میباشد. قطعات سر شده جلبکی و مواد مشتق شده از فیتو پلانکتونها و زئوپلانکتونها متشکلین اصلی (کروژن ساپروپل) کروژن نوع دوم است.
کروژن نوع سوم :
کروژن نوع سوم یا هومیک دارای نسبت هیدروژن به کربن کمتر از 84 % میباشد. کروژن نوع سوم از لیگنیت و قطعات چوبی گیاهان که در خشکی تولید میشود به وجود میآید.
مراحل تشکیل کروژن
مواد آلی راسب شده در حوضههای رسوبی با گذشت زمان در لابهلای رسوبات دفن میشود. ازدیاد عمق دفنشدگی با افزایش فشار و دمای محیط ارتباط مستقیم دارد. تیسوت ( 1977) تحولات مواد آلی در مقابل افزایش عمق را تحت سه مرحله به شرح زیر تشریح میکند :
مرحله دیاژنز
تحولات مواد آلی در مرحله دیاژنز در بخشهای کم عمقتر زیر زمین و تحت دما و فشار متعارف انجام میشود. این تحولات شامل تخریب بیولوژیکی توسط باکتریها و فعل و انفعالات غیر حیاتی میباشد. متان ، دیاکسید کربن و آب از ماده آلی جدا شده و مابقی به صورت ترکیب پیچیده هیدروکربوری تحت عنوان کروژن باقی میماند. در مرحله دیاژنز محتویات اکسیژن ماده آلی کاسته میشود ولی نسبت هیدروژن به کربن ماده آلی کم و بیش بدون تغییر باقی میماند.
تاثیر مرحله دیاژنز در بوجود آمدن هیدروکربنها :
در اوائل مرحله دیاژنز مقداری از مواد جامد از قبیل خرده فسیلها و یا کانیهای کوارتز و کربنات کلسیم و … ، ابتدا حل شده بعدا از آب روزنهای اشباع گشته ، سپس به همراه سولفورهای آهن - سرب و روی و مس و غیره دوباره رسوب میکنند. در این مرحله مواد آلی نیز به سوی تعادل میروند. یعنی اول در اثر فعالیت باکتریها مواد آلی متلاشی شده و بعدا همزمان با سخت شدن رسوبات (سنگ شدگی) این مواد نیز پلیمریزه شده و مولکولهای بزرگتری را تشکیل داده سپس به تعادل میرسند که در این حالت تعادل آنها را کروژن مینامند.
مرحله کاتاژنز
تحولات مواد آلی در مرحله کاتاژنز در عمق بیشتر تحت دمای زیادتر صورت میگیرد. جدایش مواد نفتی از کروژن در مرحله کاتتاژنز به وقوع میپیوندد. در ابتدا نفت و سپس گاز طبیعی از کروژن مشتق میشود. نسبت هیدروژن به کربن ماده آلی کاهش یافته ولی در مقدار اکسیژن به کربن تغییر عمدهای صورت نمیگیرد.
تاثیر مرحله کاتاژنز در بوجود آمدن هیدروکربنها : در این مرحله مواد آلی تغییرات زیادی پیدا میکنند و حین تغییر وضع مداوم مولکولی در کروژنها در ابتدا نفتهای سنگین ، بعدا نفتهای سبک و در آخر گازهای مرطوب تولید میشوند. در آخر مرحله کاتاژنز تقریبا تمامی شاخههای زنجیری هیدروکربنها از مولکول کروژن جدا شده و مواد آلی باقیمانده در مقایسه با زغال سنگها از نظر درجه بلوغ ، شبیه به آنتراسیت بوده و ضریب انعکاسی بیش از 2% دارند.
مرحله متاژنز
تحولات ماده آلی در مرحله متاژنز تحت دما و فشار بالاتر نسبت به مراحل قبلی انجام میشود. بقایای هیدروکربن بخصوص متان از ماده آلی جدا میشود. نسبت هیدروژن به کربن کاهش یافته ، به نحوی که در نهایت کربن به صورت گرافیت باقی خواهد ماند. تخلخل و تراوایی سنگ در این مرحله به حد قابل چشم پوشی میرسد.
تاثیر مرحله متاژنز در بوجود آمدن هیدروکربنها :
در مرحله متاژنز و متامورنیسم رسوبات در عمق بیشتر و تحت تاثیر حرارت و فشار بیش از حد قرار دارند. در این مرحله کانیهای رسی ، آب خودشان را از دست داده و در نتیجه تبلور مجدد در بافت اصلی سنگ تغییرات بوجود میآید. در این مرحله کروژن باقی مانده (موادآلی باقی مانده) تبدیل به متان و کربن باقیمانده میشود. این مواد را میتوان قابل قیاس با تبدیل زغال سنگ به آنتراسیت دانست که ضریب انعکاسشان تا 4% میرسد. بالاخره در آخراین مرحله باقیمانده مواد آلی که به صورت کربن باقی مانده در آمده بود، تبدیل به گرافیت میشود.
رسیدگی کروژن
نفت و گاز در مرحله کاتاژنز از کروژن نیمه رسیده مشتق میشوند. اشتقاق هیدروکربور از کروژن نارس امکان پذیر نیست. به دنبال رسیدگی کروژن در ابتدا نفت و سپس گاز طبیعی از کروژن جدا میشود. هنگامی که کروژن کاملا برسد دیگر نفت و گازی از آن به وجود نمیآید. رسیدگی کروژن به دما ، زمان و احتمالا فشار بستگی دارد.
تولید عمده نفت از کروژن در دمای 60 تا 120 درجه سانتیگراد صورت میگیرد. تولید عمده گاز از کروژن در دمای 120 تا 225 درجه سانتیگراد است. کروژن در دمای بالاتر از 230 درجه سانتیگراد کلیه مواد هیدروکربوری خود را از دست میدهد و تنها به صورت گرافیت باقی میماند.
91/1/31
3:16 ع
پمپ ها با جا به جایی غیر مثبت : توانایی مقاومت در فشار های بالا را ندارند و به ندرت در صنعت هیدرولیک مورد استفاده قرار می گیرند و معمولا به عنوان انتقال اولیه سیال از نقطه ای به نقطه دیگر بکار گرفته می شوند. بطور کلی این پمپ ها برای سیستم های فشار پایین و جریان بالا که حداکثر ظرفیت فشاری آنها به 250psi تا3000si محدود می گردد مناسب است. پمپ های گریز از مرکز (سانتریفوژ) و محوری نمونه کاربردی پمپ های با جابجایی غیر مثبت می باشد.
پمپ های با جابجایی مثبت : در این پمپ ها به ازای هر دور چرخش محور مقدار معینی از سیال به سمت خروجی فرستاده می شود و توانایی غلبه بر فشار خروجی و اصطکاک را دارد . این پمپ ها مزیت های بسیاری نسبت به پمپ های با جابه جایی غیر مثبت دارند مانند مانند ابعاد کوچکتر ، بازده حجمی بالا ، انعطاف پذیری مناسب و توانایی کار در فشار های بالا ( حتی بیشتر از psi)
پمپ ها با جابه جایی مثبت از نظر ساختمان :
1- پمپ های دنده ای
2 - پمپ های پره ای
3- پمپ های پیستونی
پمپ ها با جابه جایی مثبت از نظر میزان جابه جایی :
1- پمپ ها با جا به جایی ثابت
2- پمپ های با جابه جایی متغییر
در یک پمپ با جابه جایی ثابت (Fixed Displacement) میزان سیال پمپ شده به ازای هر یک دور چرخش محور ثابت است در صورتیکه در پمپ های با جابه جایی متغیر (Variable Displacement) مقدار فوق بواسطه تغییر در ارتباط بین اجزاء پمپ قابل کم یا زیاد کردن است. به این پمپ ها ، پمپ ها ی دبی متغیر نیز می گویند.
باید بدانیم که پمپ ها ایجاد فشار نمی کنند بلکه تولید جریان می نمایند. در واقع در یک سیستم هیدرولیک فشار بیانگر میزان مقاومت در مقابل خروجی پمپ است اگر خروجی در فشار یک اتمسفر باشد به هیچ وجه فشار خروجی پمپ بیش از یک اتمسفر نخواهد شد .همچنین اگر خروجی در فشار 100 اتمسفر باشد برای به جریان افتادن سیال فشاری معادل 100 اتمسفر در سیال بوجود می آید.
پمپ های دنده ای Gear Pump
این پمپ ها به دلیل طراحی آسان ، هزینه ساخت پایین و جثه کوچک و جمع و جور در صنعت کاربرد زیادی پیدا کرده اند . ولی از معایب این پمپ ها می توان به کاهش بازده آنها در اثر فرسایش قطعات به دلیل اصطکاک و خوردگی و در نتیجه نشت روغن در قسمت های داخلی آن اشاره کرد. این افت فشار بیشتر در نواحی بین دنده ها و پوسته و بین دنده ها قابل مشاهده است.
پمپ ها ی دنده ای :
1- دنده خارجی External Gear Pumps
2– دنده داخلی Internal Gear Pumps
3- گوشواره ای Lobe Pumps
4- پیچی Screw Pumps
5- ژیروتور Gerotor Pumps
1- دنده خارجی External Gear Pumps
در این پمپ ها یکی از چرخ دنده ها به محرک متصل بوده و چرخ دنده دیگر هرزگرد می باشد. با چرخش محور محرک و دور شدن دنده های چرخ دنده ها از هم با ایجاد خلاء نسبی روغن به فضای بین چرخ دنده ها و پوسته کشیده شده و به سمت خروجی رانده می شود.
لقی بین پوسته و دنده ها در اینگونه پمپ ها حدود (0.025 mm ) می باشد.
افت داخلی جریان به خاطر نشست روغن در فضای موجود بین پوسته و چرخ دنده است که لغزش پمپ (Volumetric efficiency ) نام دارد.
با توجه به دور های بالای پمپ که تا rpm 2700 می رسد پمپاژ بسیار سریع انجام می شود، این مقدار در پمپ ها ی دنده ای با جابه جایی متغییر می تواند از 750 rpm تا 1750 rpm متغییر باشد. پمپ ها ی دنده ای برای فشارهای تا (کیلوگرم بر سانتی متر مربع200 ) 3000 psi طراحی شده اند که البته اندازه متداول آن 1000 psi است.
2– دنده داخلی Internal Gear Pumps
این پمپ ها بیشتر به منظور روغنکاری و تغذیه در فشار های کمتر از 1000 psi استفاده می شود ولی در انواع چند مرحله ای دسترسی به محدوده ی فشاری در حدود 4000 psi نیز امکان پذیر است. کاهش بازدهی در اثر سایش در پمپ های دنده ای داخلی بیشتر از پمپ های دنده
3- پمپ های گوشواره ای Lobe Pumps
این پمپ ها از خانواده پمپ های دنده ای هستند که آرامتر و بی صداتر از دیگر پمپ های این خانواده عمل می نماید زیرا هر دو دنده آن دارای محرک خارجی بوده و دنده ها با یکدیگر درگیر نمی شوند. اما به خاطر داشتن دندانه های کمتر خروجی ضربان بیشتری دارد ولی جابه جایی حجمی بیشتری نسبت به سایر پمپ های دنده ای خواهد داشت.
4- پمپ های پیچی Screw Pumps
پمپ پیچی یک پمپ دنده ای با جابه جایی مثبت و جریان محوری بوده که در اثر درگیری سه پیچ دقیق (سنگ خورده) درون محفظه آب بندی شده جریانی کاملا آرام ، بدون ضربان و با بازده بالا تولید می کند. دو روتور هرزگرد به عنوان آب بندهای دوار عمل نموده و باعث رانده شدن سیال در جهت مناسب می شوند.حرکت آرام بدون صدا و ارتعاش ، قابلیت کا با انواع سیال ، حداقل نیاز به روغنکاری ، قابلیت پمپاژ امولسیون آب ، روغن و عدم ایجاد اغتشاش زیاد در خروجی از مزایای جالب این پمپ می باشد.
5- پمپ های ژیروتور Gerotor Pumps
عملکرد این پمپها شبیه پمپ های چرخ دنده داخلی است. در این پمپ ها عضو ژیروتور توسط محرک خارجی به حرکت در می آید و موجب چرخیدن روتور چرخ دندهای درگیر با خود می شود.
در نتیجه این مکانیزم درگیری ، آب بندی بین نواحی پمپاژ تامین می گردد. عضو ژیروتور دارای یک چرخ دندانه کمتر از روتور چرخ دنده داخلی می باشد.
حجم دندانه کاسته شده ضرب در تعداد چرخ دندانه چرخ دنده محرک ، حجم سیال پمپ شده به ازایئ هر دور چرخش محور را مشخص می نماید.
91/1/31
3:10 ع
قابلیت محافظت یک فیلتر هوا از ورود ذرات معلق به داخل موتور معمولاً بر اساس مفاد پروسه ISO 5011 بررسی می گردد ، برای این منظور ما یک نمونه از فیلترهای K&N را در تست گرد و غبار کورس ( COWSE TEST DART ) که در آن سایز ذرات گرد و غبار را 5.5 میکرون تا 176 میکرون می باشد قرار دادیم برای اینکه تصوری از این ابعاد داشته باشید می توانید به این نکته توجه کنید که قطر موی انسان در حدود 50 میکرون می باشد ، نتیجه تست فوق را راندمان یک فیلتر هوا در پالایش هوای ورودی می نامند ، این عدد بیانگر تعداد گردو غبار گرفته شده توسط فیلتر هوای ورودی موتور می باشد ، هدف K&N طراحی فیلترهائی است که در عین داشتن کمترین مقاومت در برابر هوای ورودی راندمان بالائی در حدود % 98 داشته باشد. به دلیل آنکه هیچ دو فیلتری از لحاظ ابعاد و شکل مانند یکدیگر نیستند ، مقدارمطلق دبی هوا و راندمان پالایش آنها با هم متفاوت خواهد بود ، ولی در هر صورت شما می توانید با خیال راحت مطمئن باشید که تمامی فیلترهای K&N طوری طراحی شده اند که بیشترین هوای ورودی را در اختیار موتور خودروی شما قرار میدهند ، در حالیکه با تمام قدرت از ورود ذرات گرد و غبار به موتور خودروی شما جلوگیری می نمایند .
بدست آوردن هر دو خاصیت نقش بسیار بحرانی برای موتور خودرو دارد به همین دلیل است که مصرف کنندگان با توجه به این دو خاصیت اقدام به خرید فیلتر نمایند ، طراحی یک فیلتر که دبی هوای بالائی داشته باشد کار چندان پیچیده ای نمی باشد ، ولی طراحی و ساخت فیلترهای که هم قابلیت عبور هوای بالا و در عین حال قابلیت جذب ذرات معلق در طول مدت کارکرد خود را داشته باشد کاری بس پیچیده و سخت می باشد ، به همین دلیل است که علی رغم تلاش کمپانیهای بسیار مخصوصاٌ کمپانیهای چینی در ساخت فیلترهای شبیه به K&N ( که حتی از رنگ مشابه K&N سود برده اند ) ، هیچ کمپانی در دنیا موفق به ساخت چینین فیلتری با چینین سطح محافظتی از موتور خودرو نگردیده است .
چرا دبی هوا عامل مهمی در کارکرد موتور می باشد ؟
سبک بیان بسیار ساده است، یک موتور مانند یک پمپ هوا می باشد ، هر چه هوای بیشتری وارد موتورگردد احتراق بهترصورت پذیرفته وبازده موتوربالا رفته درنتیجه قدرت موتوربالا تروگشتاور بیشتر از آن استخراج می شود ، اسب بخار واحد اندازه گیری قدرت موتور و نیوتن متر واحد اندازه گیری گشتاور موتور می باشد ، هر چه گشتاور بیشتر باشد شتابگیری بهتر می گردد و هر چه قدرت موتور بیشتر باشد حداکثر سرعت ( بدون در نظر گرفتن تغییر در ضرایب گیربکس دیفرانسیل ) فیلترهای K&N با کاهش مقاومت در برابر هوای ورودی طوری طراحی شده اند که هر دو فاکتور مقاوت موتور و گشتاور مورد را افزایش دهند ، به این ترتیب بهبود پاسخگوئی به تغییرات دریچه گاز واضح خواهد بود .
هزینه نگهداری بهینه مقاومت ناچیز در برابر جریان هوای ورودی به عنوان مشکلات اصلی فیلترها می باشد مقدار مقاومت در برابر هوای ورودی بر اساس سایز فیلتر ، مساحت فیلتر ، شکل فیلتر ، ساختار فیلتر متفاوت خواهد بود .
1توربولانس ( جریان گردابی ) هوای ورودی به فیلتر .
? پارچه کتان مخصوص چند لایه اشباع شده با روغن مخصوص.
?ذرات معلق مهار شده توسط فیلتر مقاومت چندانی تا 50000 مایل در برابر هوای ورودی ایجاد نخواهد نمود .
?ذرات روغن درون فیلتر مانند یک مخزن، آلایندگی ها را درخود نگه میدارد ، و با اینکار ظرفیت فیلتر را برای جذب آلایندگی ها بالا برده بدون آنکه باعث گرفتگی فیلتر گردند .
?مش فلزی که کتان فیلتر را در بر گرفته باعث می شود شکل ظاهری فیلتر به خوبی حفظ شده و از بوجود آمدن جریان گردابی نامطلوب بر روی فیلتر جلوگیری می نماید.
?با توجه به شکل چین های روی فیلتر، جریان هوای بدون توربولانس و فاقد آلایندگی با دبی بالاتر از فیلترهای معمولی که وارد سیستم تنفسی موتور می گردند .
Ari Flow in filter
یک کلمه راجع به عمل پالایش هوای ورودی :
یک مساله بسیار حساس در مورد خاصیت جذب ذرات معلق توسط فیلتر هوا وجود دارد که در هیچ راهنمای استفاده اتومبیل و کاتالوگ کمپانیهای فیلترسازی وجود ندارد ، این مساله راندمان پالایش فیلتر می باشد ، بر خلاف فیلترهای روغن و بنزین که گاهی اوقات بعضی از مطالب درباره راندمان و اهمیت کارآئی آنها بیان می شود ، متاسفانه درباره اهمیت راندمان فیلتر هوا مطالب بسیار کمی مطرح می گردد .
مطالعات انجام شده نشان داده است که بیشتر سایش و اصطکاک موتور خودرو توسط ذراتی به اندازه 10 تا 20 میکرون صورت می پذیرد .
این ذرات در صورتی وارد موتور می گردند که بتوانند از هر یک از فیلترهای ورودی برسر هوا و سوخت وارد موتور گردند .
فیلترهای K&N به خوبی از عهده این مهم بر می آیند .
درشرکت K&N فیلترهای مختلف تحت تست راندمان پالایش ( Efficiency Test Filtration) قرار می گیرند ، عدد به دست آمده عمدتاٌ بین 97 تا 98 درصد می باشد ، در بعضی از گونه های فیلتر این عدد به 99 درصد هم می رسد که این تعداد به نوع شکل و طراحی فیلتر ( از لحاظ شکل و چین های روی فیلتر) بستگی دارد این در حالیست که تمامی این فیلترها با قابلیت چنین محافظتی در برابر ذرات معلق ورودی وظیفه هوادهی به موتور را بهتر از هر فیلتر دیگری اجرا می کنند .
معمولاً ما بعضی از تبلیغات را با عنوان " جدید " در مورد بهبود کارآئی و افزایش مقدار پالایش بر روی بعضی از فیلترهای یکبار مصرف در بازار می بینیم در اکثر موارد این جملات با عدد دقیق راندمان پالایش فیلتر در تضاد می باشد ، در واقع این ادعا صرفاً در مورد افزایش ظرفیت نگهداری ذرات معلق فیلتر می باشد ، این یعنی فیلتر می تواند مقداربیشتری آلودگی را قبل از تعویض در خود نگه دارد.
در نظر داشته باشید فیلترهای K&N در طول مدت وارانتی خود تنها نیاز به شستشو و اشباع شدن به روغن با کیت مخصوص به خود را برای کارکرد مثل روز اول خود دارند .
ما همواره به مشتریان خود پیشنهاد می کنیم با مطالعه و افزایش اطلاعات خود، در هنگام خرید متوجه کیفیت و کارآئی خرید خود باشند .
جالب است بدانید تستهائی که ما خود بر روی فیلترها انجام داده ایم نشان دهنده اختلافات زیاد ما بین انواع فیلترهای موجود در بازار بود ، اکثر فیلترهای یکبار مصرف در بهترین شرایط به راندمان پالایش 93% دست پیدا می کردند انهم برای مدت کوتاه .
فکر می کنیم این اختلاف در مقدار راندمان پالایش و حساسیت موضوع نگهداری موتور یکی از دلایل خرید مشتریان ما باشد .
فیلتراسیون – یک برش عمیق و تشریح کارکرد فیلتر :
بیشتر مردم بر این تصورند که فیلتر هوا بر اساس " یا رد میشه یا نمیشه " کار می کند. یعنی فکر می کنند ذرات معلقی که بزرگتر از منفذهای کاغذ فیلتر هستند در فیلتر به دام می افتند و ذراتی که از سوراخهای فیلتر کوچکترند از آن رد می شوند. در واقع فیلترهای کاغذی معمولی به همین سبک کار می کنند مقاومت بسیار زیاد فیلترهای هوای معمولی در برابر عبور جریان هوا به همین دلیل می باشد ، منفذهای روی این فیلترها برای آنکه فیلتر راندمان پالایش قابل قبولی داشته باشد باید بسیار کوچک باشد .
کتانهای آغشته به روغن که در ساخت فیلترهای K&N بکار می روند به طریق کاملاً متفاوی عمل می کنند این فیلترها بر ا ساس یک سری از قواعد علمی به نحو جالبی ذرات معلق را از درون جریان گذرنده جدا کرده و در خود نگه می دارند .
قانون اول به نام قانون جداسازی (Interception) می باشد. در این قانون به جداسازی ذرات از جریان هوا اشاره می شود طبق این قانون جریان هوا همیشه کوتاهترین مسیر رابرای عبور انتخاب می کند و از آنجائیکه هوا برای عبور از اطراف الیاف کتان فیلتر تحت فشار می باشد در هنگام عبور هوا از میان این الیاف ذرات معلق با جداره های انها تماس پیدا کرده و توسط آنها گرفته می شوند ، سپس ذرات دستگیر شده توسط روغن در آنجا جذب و نگه داشته می شوند.
قانون دوم به قانون به هم فشردگی(Impaction ) که بیشتر روی ذرات معلق بزرگتر و سنگینتر اعمال می شود شناخته می گردد.
به هم فشردگی وقتی اتفاق می افتد که اینرسی جرمی ذرات معلق باعث انحراف آنها از مسیر جریان هوا شده و در واقع ذرات بزرگتر و سنگین دیگر از حرکت در مسیر جریان هوا تبعیت نکنند ، در آن هنگام این ذرات به جای عبور از میان الیاف کتان فیلتر به همراه جریان هوا مستقیماٌ به این الیاف برخورد کرده و توسط آنها به دام افتند .
مهمترین قانون مورد مصرف در این فیلترها قانون انتشار (Diffusion ) می باشد که در مورد قوانین فیزیکی حرکت ذرات بسیار کوچک بحث می کند که طی آن ذرات بسیار کوچک معلق در هوا تحت تأثیر نیروهای ناشی از جریان هوا قرار می گیرند .
نیروهائی مانند تغییرات سرعت ، تغییرات فشار ، توربولانس ناشی از ذرات دیگر و برخورد با مولکولهای هوا باعث حرکت تصادفی و بی نظمی این ذرات بسیار کوچک می شوند ، در نتیجه این ذرات ریز از جریان هوا برای حرکت پیروی می کنند و این حرکت بی نظم و مغشوش آنها باعث برخوردشان با الیاف فیلترو به دام افتادن آنها می شود .
این خاصیت باعث می شود که یک فیلتر هوا بتواند ذرات معلقی که بسیار کوچک تر از سوراخهای پارچه فیلتر می باشند را به خود جذب کند. به اضافه شیوه ای که در فیلترهای K&N برای جذب و نگهداری این ذرات معلق بسیار ریز وجود دارد بسیار متفاوت می باشد .
یک فیلتر کاغذی فقط می تواند جذب سطحی (Surface Loading ) که به معنی جذب ذرات فقط توسط سطح فیلتر می باشد را انجام دهد این در حالیست که الیاف فیلترهای K&N از چندین لایه تشکیل شده که این فیلتر را قادربه "جذب عمقی" (Depth Loading ) یعنی قابلیت جذب در لایه های مختلف در عمق فیلتر را به وجود می آورد .
این خاصیت فیلترهای K&N باعث می شود این فیلترها چندین برابر فیلترهای معمولی گنجایش جذب آلاینده ها را در هر اینچ مربع داشته باشند .
این سه قانون فیزیک و استفاده از آنها باعث می شود فیلترهای K&N با ساختار منحصر به فردش یک عبور آزاد کم مقاومت به همراه یک پالایش بسیار مطلوب را برای مصرف کننده به ارمغان بیاورد .
نتایج یک آزمایشگاه مستقل :
در راستای شفاف سازی قابلیت فیلتر K&N برای محافظت از موتور خودروی شما ، ما فیلترهای خود را در یک آزمایشگاه مستقل و جدا از متعصبات کارخانه خود مورد تست قرار داده ایم پروسه تست براساس استاندارد SAE J726 فیلتر هوا متعلق به انجمن مهندسین خودروی آمریکا انجام می شود ، اخیراٌ تست فیلتر هوا بر اساس استاندارد بین المللی ISO 5011 که جایگزین استاندارد قبلی شده است صورت می پذیرد .
91/1/31
3:9 ع
شیمی نفت
تاریخچه :
این ماده را از قرنها پیش بصورت گاز در آتشکده و یا به فرم قیر (کاده ای که پس از تبخیر مواد فرار یا سبک نفت از آن باقی میماند) میشناختهاند یا بطوری که در کتب مقدس و تاریخی اشاره شده است که در ساختمان برج بابل از قیر استفاده گردیده و کشتی نوح و گهواره موسی نیز به قیر اندوده بوده است. بابلیها از قیر بعنوان ماده قابل احتراق در چراغها و تهیه ساروج جهت غیر قابل نفوذ نمودن سدها و بالاخره جهت استحکام جادهها استفاده میکردهاند.
مدت زمان مدیدی ، مورد استعمال نفت فقط برای مصارف خانگی و یا به عنوان چربکنندهها بود، اما از آغاز قرن شانزدهم میلادی روز به روز موارد استعمال آن رو به افزایش نهاد تا اینکه در سال 1854 دو نفر داروساز وجود یک فراکسیون سبک قابل اشتعال را در روغن زمینی تشخیص دادند و همچنین به کمک تقطیر ، مواد دیگری بدست آوردند که برای ایجاد روشنایی بکار میرفت. بر اساس این کار آزمایشگاهی بود که بعدا دستگاههای عظیم تصفیه نفت طرحریزی و مورد بهره برداری قرار گرفت. صنعت نفت در آتازونی در سال 1859 شروع شد.
تاریخچه استخراج نفت در ایران :
صنعت نفت ایران نیز از سال 1908 پس از هفت سال تفحص مکتشفین و کشف نفت در مسجدسلیمان واقع در دامنه جبال زاگرس ، پا به عرصه وجود گذاشت.
نفت خام :
امروزه چاههای نفت متعددی در سراسر جهان وجود دارد که از آنها نفت استخراج میکنند و به نفتی که از چاه بیرون کشیده میشود، نفت خام میگویند. نفت خام را تصفیه میکنند، یعنی هیدروکربنهای گوناگونی را که نفت خام از آنها تشکیل شده است از یکدیگر جدا میکنند که به این کار پالایش نفت میگویند و در پالایشگاهها این کار انجام میشود. نفت منبع انرژی و سرچشمه مواد اولیه بسیاری از ترکیبات شیمیایی است و این دور از عوامل اصلی اقتصادی مدرن بشمار میرود. در صنایع جدید از ثروت بیکران و تغییر و تبدیل مواد خام اولیه آن بیاندازه استفاده میشود.
تشکیل نفت :
نحوه پیدایش نفت دقیقا تشخیص داده نشده و در این مورد فرضیات گوناگونی پیشنهاد شده است. برخی از این تئوریها ، مربوط به مواد معدنی و بعضی دیگر مربوط به ترکیبات آلی میباشد.
تشکیل نفت از مواد معدنی :
اساس این فرضیه بر این است که کربورهای فلزی تشکیل شده در اعماق زمین در اثر تماس با آبهایی که در زمین نفوذ مینماید، ابتدا ایجاد هیدروکربورهای استیلنی با رشته زنجیر کوتاه میکند. سپس هیدروکربورهای حاصل در اثر تراکم و پلیمریزه شدن ایجاد ترکیبات پیچیده و کمپلکس را می نماید که اغلب آنها اشباع شده است.
تشکیل نفت از مواد آلی :
بر اساس این فرضیه تشکیل نفت را در اثر تجزیه بدن حیوانات در مجاورت آب و دور از هوا میدانند. زیرا در این شرایط ، قسمت اعظم مواد ازته و گوگردی تخریب و مواد چرب باقیمانده در اثر آب ، هیدرولیز میگردد. اسیدهای چرب حاصله ، تحت اثر فشار و درجه حرارت با از دست دادن عوامل اسیدی تولید هیدروکربورهائی با یک اتم کربن کمتر مینماید.
"انگلر Engler" از تقطیر حیوانات دریائی توانسته است مواد نفتی را تهیه نماید و با توجه به خاصیت "چرخش نوری" مواد نفتی که علت آن وجود گلسترین است (ماده ای که در بدن حیوانات وجود دارد) این فرضیه بیان و مورد تایید شده است. در صورتی که فرضیه های دیگر که مبتنی بر اساس مواد معدنی در تشکیل نفت میباشد، هیچگونه توضیح و دلیل قانع کننده ای در مورد این ویژگی نمیتواند بیان نماید.
همچنین نفت میتواند از تجزیه گیاهان تولید گردد. در این حالت ، خاصیت چرخش نور را به علت وجود ترکیب مشابه گلسترین یعنی پلی استرولها میدانند."مرازک Mrazec" ، میکروبها را در این تغییر و تبدیل موثر میداند. تئوری تشکیل نفت بر مبنای مواد آلی ، فعلا بیشتر مورد قبول میباشد و اختلاف قابل ملاحظهای را که بین ژیزمانها (منابع نفتی) مشاهده میگردد، بعلت شرایط و عوامل مختلف تشیکل ژیزمانها میدانند.
مواد سازنده نفت خام :
مواد سازنده نفت از نظر نوع هیدروکربور و همچنین از نظر نوع ترکیبات هترواتم دار بستگی به محل و شرایط تشکیل آن دارد. بنابراین مقدار درصد مواد سازنده نفت خام در یک منبع نسبت به منبع دیگر تغییر میکند. بطور کلی مواد سازنده نفت شامل: هیدروکربورها- ترکیبات اکسیژنه - سولفوره - ازته و مواد معدنی میباشد.
خواص نفت خام
گرانی :
چگالی نفتهای خام را بیشتر بر حسب درجه A.P.I به جای گرانی ویژه (چگالی نسبی) بیان میکنند. ارتباط بین این دو ، به گونه ای است که افزایش گرانی API با کاهش گرانی ویژه مطابقت میکند. گرانی نفت خام میتواند بین پایینتر از 10API تا بالاتر از 50API قرار بگیرد، ولی گرانی اکثر نفتهای خام در گستره بین 20 تا 45API قرار دارد. گرانی API همواره به نمونه مایع در 60 درجه فارینهایت اشاره دارد.
مقدار گوگرد :
مقدار گوگرد و گرانی API دو خاصیتی هستند که بیشترین اثر را به ارزشگذاری نفت خام دارند. مقدار گوگرد بر حسب درصد وزنی گوگرد بیان میشود و بین 0,1 در صد تا 5 درصد تغییر میکند. نفتهایی که بیش از 0,5 درصد گوگرد دارند، در مقایسه با نفتهای کمگوگردتر ، معمولا محتاج فراورشهای گستردهتری هستند.
نقطه ریزش :
نقطه ریزش نفت خام بر حسب F? یا c? معرف تقریبی پارافینی بودن یا آروماتیکی بودن نسبی آن است. هرچه نقطه ریزش پایینتر باشد، مقدار پارافین کمتر و مقدار آروماتیک بیشتر است.
حلالیت :
قابلیت انحلال هیدروکربورها در آب عموما خیلی کم میباشد. مقدار آب موجود در هیدروکربورها با افزایش درجه حرارت زیاد میشود. حلالیت هیدروکربورها در کلروفرم ، سولفورکربن و تتراکلریدکربن حائز اهمیت است که با افزایش درجه حرارت ، زیاد و با افزایش وزن مولکولی کاسته میگردد. قابلیت انحلال آروماتیکها بیشتر بوده و بعد از آنها اولفینها - نفتنها - متانیها قرار دارد. ضمنا قابلیت انحلال ترکیبات اکسیژنه - ازته - سولفوره ، کمتر از هیدروکربورها میباشد. بالاخره نفت ، حلال هیدروکربورهای گازیشکل و تقریبا تمام هیدرورکربورهای جامد - گریسها - رزینها - گوگرد و ید میباشد.
نقطه جوش :
نقطه جوش هیدروکربورهای خالص با وزن مولکولی و همچنین برای سریهای مختلف با تعداد مساوی اتم کربن بترتیب از هیدروکربورهای اشباعشده به اولفینها - نفتنها و آروماتیکها افزایش مییابد. بدین ترتیب نقطه جوش هیدروکربورهای اشباع شده و اولفینها از همه کمتر و سیکلوآلکانها و آروماتیکها از سایرین بیشتر میباشد. برای برشهای نفتی که مخلوطی از هیدروکربورهای مختلف میباشند، یک نقطه جوش ابتدائی و یک نقطه جوش انتهایی در نظر گرفته میشود و حد فاصل بین این دو نقطه برای یک برش به نوع مواد سازنده اغلب زیاد و متغیر میباشد که به این حد فاصل بین دو نقطه "گستره تقطیر" گفته میشود.
گرمای نهان تبخیر :
گرمای نهان تبخیر در یک سری همولوگ از هیدروکربنها بترتیب از مواد سبک به سنگین کاهش مییابد و همچنین مقدار آن از یک سری به سری دیگر ، مثلا بترتیب از آروماتیکها به نفتنها و هیدروکربورهای اشباع شده نقصان مییابد. بنابراین گرمای نهان تبخیر با دانسیته فراکسیون مربوط بستگی دارد.
قدرت حرارتی :
قدرت حرارتی عبارت از مقدار کالری است که از سوختن یک گرم ماده حاصل میشود. قدرت حرارتی هیدروکربورها به ساختمان مولکولی آنها و قدرت حرارتی یک برش نفتی به نوع و مواد سازنده آن سبتگی دارد. قدرت حرارتی متان بیشتر از سایر هیدروکربورها و برابر با 13310 کیلوکالری به ازای یک کیلوگرم میباشد و مواد سنگین حاصله از نفت خام دارای قدرت حرارتی در حدود 10000 کیلو کالری میباشد.
اثر اسید نیتریک :
هیدروکربورها در اثر اسید نیتریک به ترکیبات نیتره یا پلینیتره تبدیل میشود. نیتراسیون برخی از مواد نفتی منجر به تهیه ترکیبات منفجره یا مواد رنگین میگردد. موارد استعمال برخی از برش های نفتی بدست آمده از نفت خام
شیرین کردن آب دریا :
یکی از موارد استعمال گازهای نفتی در صنایع وابسته به پالایشگاهها تهیه آب شیرین از آب شور میباشد.
به عنوان سوخت :
از جمله ، بنزین برای سوخت موتورهای مختلف ، کروزون سوخت اغلب تراکتورها و ماشینهای مورد استفاده در کشاورزی و همچنین موتورهای جت هواپیماها اغلب از کروزون یا نفت سفید میباشد، گازوئیل که موتورهای دیزل بعنوان سوخت از نفت گاز (گازوئیل) استفاده مینمایند، نفت کوره یا مازوت یک جسم قابل احتراق با قدرت حرارتی 10500 کالری بوده که بخوبی میتواند جانشین زغال سنگ گردد و سوختن آن تقریبا بدون دود انجام میگیرد.
روشنایی :
از کروزون جهت روشنایی و همچنین برای علامت دادن به کمک آتش استفاده میشود، چون نقطه اشتعال کروزون بالاتر از 35 درجه است، لذا از نظر آتشسوزی خطری ندارد.
حلال :
از هیدروکربورهای C4 تا C10 میتوان برشهائی با دانسیته و نقاط جوش ابتدائی و انتهایی متفاوت تهیه نمود که مورد استعمال آنها اغلب بعنوان حلال میباشد. بعنوان مثال ، اتر نفت یک حلال سبک با نقطه جوش 75-30 درجه سانتیگراد و وایت اسپیریت (حلال سنگین) که از تقطیر بنزین بدست میآید بعنوان حلال ، رنگهای نقاشی و ورنی ها استفاده میگردد. همچنین برای تمیز کردن الیاف گیاهی و حیوانی و یا سطح فلزات از برشهای خیلی فرار (تقطیر شده قبل از 110 درجه سانتیگراد) استفاده میشود.
91/1/31
3:7 ع
مقدمه
لوله حفاری(Drill Pipe) مهمترین قسمت از ساق یا رشته حفاری است که عمل انتقال حرکت به مته را انجام می دهد.
علاوه بر لوله های حفاری لوله های وزنه (Drill collar) نیز در انتهای ساق یا رشته حفاری قرار می گیرند که وزن لازم روی مته را تامین می کنند و همچنین باعث کشیدگی رشته لوله های حفاری میشود.
همچنین طوفه های (Subs) مختلف در رشته حفاری وظایف خاصی برعهده دارند. در زیر به طور مختصر راجع به علامت گذاری وشناسایی لوله های حفاری و وزنه صحبت شده است.
عکسی از لوله های حفاری و لوله های وزنه در جلو آنها چیده شده.
لولة حفاری
لوله های حفاری از دو قسمت تیوب و ابزار پیوند تشکیل شده اند.
تیوب لوله حفاری توسط اندازه قطر بیرونی آن, اندازه وزن- پوند (lbf) بر واحد طول- فوت (ft) و درجه شرح داده می شود .
برای مثال برای لوله 2/1-4 - 16.6 - E قطر بیرونی تیوب به اندازه 2/1-4 in است.
فهرست علائم :
مشروح :
قطر بیرونی اسمی : 2/1-4
وزن برفوت اسمی : 16.6
( وزن ابزارهای پیوند را شامل نمی شود چرا که در آن حالت « وزن تنظیم شده » نامیده می شود و در محاسبات طراحی استفاده می شود )
E = درجه ، که نشاندهنده استحکام تسلیم تیوب می باشد.
طبقه بندی بر اساس کلاس لوله :
لوله های حفاری بر اساس طول مدت کارکرد پس از مدتی فرسوده شده و ضخامت دیواره آنها تغییر می کند چون قیمت هر شاخه لوله حفاری بسیار بالاست آنها را براساس ضخامت لوله کلاسه بندی کرده و مشخص می کنند.
ضخامت لوله کلاس برتر از ضخامت لوله جدید تا ضخامت لوله ای که ضخامت باقی مانده آن از 80 درصد لوله اصلی کمتر نشده باشد را شامل میشود.
کلاس 2ـ حدودش از کاهش 80 درصد کلاس برتر تا کوچکتر نبودن از 70 درصد ضخامت لوله اصلی می باشد .
کلاس 3 ـ عیبها یا ضایعات ضخامت دیواره هنگامی که فراتر از کلاس 2 باشد را پوشش می دهد .
کلاس برتر در محل استفاده با دو نوار سفید رنگ ، کلاس 2 با یک نوار زرد و کلاس 3 با یک نوار نارنجی شناخته می شوند . بطوریکه این کدگذاری رنگی موجب شده است که گاهی اوقات لوله کلاس 2 بعنوان مثال به نام لوله زرد و همین طور کلاس برتر به لوله سفید شناخته شود.
قسمت دیگری از فهرست علائم و اختصارات که می تواند به واژه های لوله حفاری اضافه شود فهمیدن باز هم بیشتر درمورد مشخصات و صفات ممیزه فیزیکی آن می باشد. چنانکه درابتدا توضیح داده شد ، E در تعریف منسوب می شود به درجه تیوب ، که در حقیقت « استحکام تسلیم » تیوب است. همه لوله های حفاری یک درجه بندی ازیکی از درجات G , X , E یا S دارند.
اندازه ضخامت دیواره اسمی به همراه درجه سختی لوله ها تعیین کننده مقادیر استحکام نسبی طراحی مهندسی است. به عنوان مثال یک اتصال 4 1/2-16.6-E کلاس ممتاز استحکام کششی بمراتب کوچکتری از یک اتصال 2/1-4-20.0-S کلاس ممتاز دارد.
برجستگی لوله حفاری(Upset) قسمت انتهای لوله است که جهت اتصال به قسمت ابزار پیوند لوله حفاری مقداری ضخیمتر ساخته می شود این برجستگی می تواند به صورت در داخل لوله یا قسمت خارج لوله باشد.
در تشریح مشخصات یک اتصال لوله ، اضافه کردن مشخصات برجستگی لوله به تشریح مفصل تر مطابق با علامت گذاری ذیل می انجامد :
1/2-4 -16.6 - E - I.E.U - Premium class
که نشان دهنده یک اتصال لوله کلاس ممتاز با قطر بیرونی4 -1/2 اینچ ، با وزن اسمی 16.6 پاند بر فوت ، ضخامت دیواره0/337 الی 0/270 اینچ و استحکام تسلیم 75,000 پام و با برجستگی داخلی ـ خارجی است. طول طبیعی قابل قبول اتصال لوله 30-/+ فوت می باشد. یک اتصال لوله با طول بین27 تا30 فوت ، اتصال رتبه II نامیده میشود. بیشتر دستگاه های حفاری برای کار با یک ، دو یا سه اتصال رتبه II ، که تشکیل یک لوله حفاری (Stand) را می دهند ، طراحی شده اند.
در مقابل ، طول لوله جداری معمولا بین 38 الی 45 فوت می باشد که رتبهIII نامیده می شود. اکنون می دانیم طریقه نمایش اطلاعات یک اتصال لوله به شکل ذیل است:
1/2-4 -16.6 - E - I.E.U - Premium class - Range II
ابزار های پیوند (Tool joint)
ابزار های پیوند قسمتهای رزوه شده انتهای لوله حفاری هستند که برای اتصال دو یا چند لوله حفاری به یکدیگر در انتهای تیوب با جوشکاری خیلی خاص اصطکاکی متصل میشوند. ابزارهای پیوند توسط مشخصات قسمت رزوه شده آنها نامگذاری می شوند.API ابزارهای پیوند را طبقه بندی کرده و نامگذاری خاصی به آنها اختصاص داده است که شامل حروف NC -Numbered Connection به معنی اتصال شماره گذاری شده ، و مقدار عددی بعد از آن است. برای اتصال4 1/2-16.6-E لوله حفاری نیازمند یک پیوند پذیرفته شده معمول آن NC 46 می باشد. در گذشته در طی مراحل پیشرفت و گسترش لوله های حفاری و ابزارهای پیوند شماره NC 46 به ابزار پیوند 2/1-4 - X H نسبت داده می شد. 2/1-4 اندازه لوله را مشخص می کرد که ابزار پیوند به آن متصل می شد و XHهم نوع یا شیوه برجستگی لوله را شرح می داد. پس از آن زمان 2/1-4 - XH کنار گذاشته شد و به جای آن NC46 جایگزین شد. همچنین در طی آن پیشرفت شکل رزوه اندکی اصلاح پیدا کرد که سبب تغییر نام شد.
ابزارهای پیوند همچنین بدلیل اینکه از قطر بیرونی بواسطه فرسودگی و سائیدگی کاسته می شود در کلاس هایی دسته بندی می شوند. از آنجائیکه قطر بیرونی و درونی با ابعاد گوناگونی ساخته می شوند (سعی می شود تا استحکام پیچشی ابزار پیوند با تیوب یکی باشد). عموماً گفته می شود استحکام کششی ابزار پیوند دو برابر تیوب لوله حفاری است و در محاسبات طراحی رشته حفاری مطرح نمی گردد. هر چند ، گشتاور اتصال لوله ها بعنوان ملاحظات طراحی باید مد نظر قرار داشته باشد.
نمونه معرفی کامل اتصال لوله حفاری عبارت است از :
1/2-4 -16.6 - E - I.E.U – NC 46 - Range II - Premium class
این فهرست علائم و اختصارات مشخصات ابعادی لوله حفاری و ابزارهای پیوند را شرح می دهد و در محاسبات و طراحی های رشته حفاری به آن رجوع خواهد شد.
لوله های وزین حفاری :
شکل لوله وزنه به همراه مته
لوله های وزین حفاری در رشته حفاری برای اعمال فشار به مته استفاده می شوند. طول لوله وزین حفاری بطور طبیعی +/ –30فوت است ، درست مشابه لوله حفاری. بعضی از انواع مختلف لوله های وزین حفاری که مورد استفاده قرار می گیرند. لوله های وزین حفاری مونل هستند که غیر مغناطیسی بوده و برای بدست آوردن برآوردهای هدایتی در حفر چاه های کج استفاده می شوند ؛ لوله های وزین حفاری کوتاه که طولشان کوچکتر از30 فوت می باشد و برای کمک به ثابت نگهداشتن تراشنده ها ، پایدارکننده ها ، IBS و غیرو در مجموعه ته چاهی استفاده می شوند و لوله های وزین ته چاه که در هر انتهایشان اتصال مادینه دارند و به مته متصل می شوند. لوله های وزین حفاری به وسیله نوع رزوه های اتصال و قطر بیرونیشان مشخص می شوند. به عبارت دیگر یک لوله وزین حفاری با قطر بیرونی 8 اینچ و رزوه های اتصال6 5/8 - Reg بعنوان لوله وزین 8 in – 6 5/8 شناخته می شود.اندازه 8 اینچ تنها به قطر بیرونی اسمی نسبت داده می شود و جاهایی را شامل نمی شود که تنگه های مانده یابی قرار دارند یا در اثر فشار تورفتگی ایجاد شده است. بازرسی اولیه لوله های وزین حفاری در محل کار تنها بر روی قسمت پیوند اتصال آنها انجام می شود و در مورد لوله های وزین به مانند ابزارهای پیوند طبقه بندی و کلاس خاصی وجود ندارد. آنها یا پذیرفته می شوند و یا رد می شوند. بطور کلی رزوه ها با مقطع استاندارد تطبیق داده می شوند و سپس ترک ها و شکستگیها با رنگ سیاه آشکار می شوند. شانه ها و وجوه آنها از لحاظ سائیدگی ها و تورفتیگی ها بررسی می شوند. اگر عیوبی پیدا شوند که نتوان آنها را تعمیر کرد ، اتصال رنگ قرمز می خورد و رد می شود.
91/1/26
10:37 ص
91/1/26
10:35 ص
91/1/23
11:18 ص
مشتقات غیر هیدروکربنی نفت
مشتقات غیر هیدروکربنی نفت خام ، معمولا شامل ترکیبات گوگرددار ، اکسیژندار و ازتدار میباشد. نوع این مشتقات در نفت خام در نوع خود پالایش نفت نیز موثر میباشد. درصد این ترکیبات در نفت زیاد نیست. ترکیبات اکسیژندار و گوگرددار ، تقریبا 2% نفت خام را شامل میشود. البته این درصد قابل تغییر است. این ترکیبات ، بیشتر در برشهای سنگین یافت میشوند و بنابراین حائز اهمیت میباشند.
ترکیبات گوگرددار
عملا کلیه نفتهای شناخته شده ، دارای گوگرد هستند. نفتهای بدست آمده از آمریکای جنوبی و خاورمیانه و خاور نزدیک بطور متوسط دارای گوگرد بیشتری است. در نفتهای خام ایران، در حد گوگرد استخراج شده از 1،22% در نفت هفت گل تا 2،46% در نفت خارک تغییر مینماید. نفتهای اروپای شرقی ، خاور دور ، هند ، پاکستان و برمه بطور متوسط از نفتهای خام سایر نقاط ، کم گوگردتر است.
نسبت درصد گوگرد زیاد در اکثر فرآوردههای نفتی ، مضر است و حذف یا تبدیل آنها به مواد بی ضرر ، قسمتهای مهم کار پالایشگاهها را تشکیل میدهد. وجود ترکیبات گوگردی در بنزین ، به علت خورندگی که در قسمتهای موتور ایجاد مینماید، مضر تشخیص داده شده است و مخصوصا در شرایط زمستانی به علت جمع شدن SO2 محلول در آب که در نتیجه احتراق بدست می آید، در محوطه میل لنگ موجب خورندگی بسیار میشود. به علاوه هرکاپتانهای محلول در مواد نفتی ، مستقیما در مجاورت هوا موجب خورندگی مس و برنج میشود. هرکاپتانها همچنین تاثیر نامطلوبی روی حساسیت سرب و ثبات رنگ فرآوردهها دارد. گوگرد آزاد در صورتی که وجود داشته باشد، خورنده است. سولفورها ، دیسولفورها و تیوفنها ، کمتر خورنده هستند؛ اما موجب کم شدن عدد اکتان در مجاورت تترااتیل سرب میشوند.
قسمت اعظم SH2 در موقع تقطیر نفت در درجات حرارت 330 و 400 درجه فارنهایت از نفت خارج میشود.
ترکیبات اکسیژندار
این ترکیبات 2% ترکیبات نفتی را شامل میشوند و تا 8% افزایش مییابند. برخلاف ترکیبات گوگردار ، ترکیبات اکسیژندار مانند اسیدهای نفتنیک ، در صنعت کاربرد دارند. از نظر اینکه اولین اسیدهای حاصله از نفت ، از مشتقات مونوسیکلوپارافی نها (نفتنها) بودهاند، آنها را اسیدهای نفتنیک نام نهادهاند. علاوه بر اسیدهای نفتنیک ، اسیدهای آلیفاتیک نیز در نفت دیده شدهاند. وجود فنلها در چکیدههای کراکینگ ثابت شده و مقدار ناچیزی نیز در بنزین خام مشاهده شده است. به این جهت به نظر میرسد که فنلها در نفت خام وجود داشته باشند. به جز اسیدهای نفتنیک و ترکیبات فنلی ، استرها ، انیدریدها ، الکلها و ستنها و آلدئیدها در نفت مشاهده شدهاند.
تهیه اسیدهای نفتنیک از نفت ، اهمیت تجارتی پیدا کرده و تولید سالانه به شدت افزایش یافته است. این اسیدها به شکل املاح فلزی خود مصرف میشوند. نفتناتهای سرب اهمیت زیادی دارند؛ زیرا به عنوان روغنهای مقاوم (در برابر فشار) و خشک کننده رنگها همراه با نفتنناتهای کبالت و منگنز مصرف میشوند. نفتناتهای مس به عنوان محافظ چوب و در ساختمان رنگهای مختلف مورد استفاده قرار میگیرند. املاح دیگر در گریسها به منظور تهیه گریس مقاوم در مقابل اکسیژن مصرف میشوند.
ترکیبات نیتروژندار یا ازتدار
ترکیبات نیتروژندار ، 50% ترکیبات نفت را شامل میشوند. (نیتروژن به عنون عامل مسموم کننده کاتالیست در شکستن کاتالسیتها میباشد.) در بعضی از نفتها ، نیتروژن وجود ندارد. با وجود مقدار کم ازت در نفت این درصد اهمیت زیادی در پالایشگاهها پیدا میکند، زیرا ترکیبات نیتروژندار را عامل اصلی مسموم کننده کاتالیزور در دستگاههای کراکینگ کاتالسیتی میدانند و نیز تشکیل صمغ را در موقع استفاده از بعضی فرآوردهها از قبیل سوختها ، به ترکیبات ازتدار نسبت میدهند.
ترکیبات ازتدار نفت را به دو گروه قلیایی و قلیایی خاکی تقسیم کردهاند. این تقسیم بندی ، بر مبنای قابلیت ترکیب این مواد با محلول اسید پرکلریک و اسید استیک قرار دارد. از ترکیبات ازتدار موجود در چکیدههای حاصل از دستگاه تقطیر ، 25 الی 35 درصد جزو گروه قلیایی است. ترکیبات ازتدار گروه قلیایی به سادگی از نفت جدا میشوند و به این سبب تحقیقات زیادی روی آنها صورت گرفته است. مشتقات پیریدین و کینولین تنها ترکیبات ازتدار گروه قلیایی است که در محصولات سبک حاصل از دستگاه کراکینگ وجود دارد. از گروه قلیایی میتوانیم از پیریدینها ، کینولینها ، آمینها ، اندولینها و هگزا هیدرو کربازولها نام ببریم. از گروههای غیر قلیایی میتوانیم از پیرولها ، اندولها و کربازولها نام ببریم.
ترکیبات فلزدار
در نفت ، علاوه بر ترکیبات مذکور ترکیبات فلزدار هم وجود دارد. در شیمی آلی با این عملکرد روبرو هستیم که برای مطالعه وجود ترکیبات معدنی در ترکیبات آلی معمولا از خاکستر ترکیبات آلی استفاده میشود. در مورد ترکیبات نفتی نیز خاکستر آنها استفاده میشود.
مقدار خاکستر یک نفت خام معمولی در حدود 0/01 تا 0/05 درصد وزنی میباشد. گر چه بعضی از ترکیبات فلزدار ممکن است واقعا مواد محلول در نفت باشد، اما قسمت اعظم آن را موادی تشکیل میدهد که یا در آبهای معلق در نفت خام محلول هستند و یا مربوط به مواد جامد معدنیاند که به شکل ذرات ریز در نفت خام پراکنده است. نتیجه تجزیه تعدادی از نفت خامهای مختلف ، وجود ترکیبات وانادیم (233ppm) ، نیکل (97ppm) ، آهن (31ppm) ، مس (1/1ppm) ، روی ، کلسیم ، منیزیم ، سرب و … را ثابت نموده است.
91/1/23
11:1 ص
کلمات کلیدی: نفت خام، تقطیر،اساس کار دستگاههای تقطیر، واحد قیر و راهسازی، آزمایشگاه ها، کاربردها
نفتی که از چاه بیرون می آید همواره مقداری آب و رسوبات گازی به همراه دارد. در واحد بهره برداری هدف آن است که این مواد را از نفت خام جدا کنند . نفت خام را به پالایشگاهها می فرستند (جهت تصفیه شدن) و یا اینکه از طریق ترمینال ها آن را صادر می کنند. می دانیم که پالایشگاهها بر اساس نوع خوراک آنها طراحی می شوند.
در این واحد ابتدا یک سری آزمایشات مقدماتی مثل اندازه گیری مقدارash, N2,O2,H2O را روی نفت خام انجام می دهند. پس از آن به شناخت ترکیب نفت خام بااستفاده از ستون تقطیر و روش غیر پیوسته می پردازند.
دراین روش مقداری نفت خام را داخل Flask قرار داده و حرارت می دهند.
در بالای Flask ستون تقطیر قرار دارد و کمی بالاتر یک Condenser قرار گرفته است. در آنجا یک دماسنج قرار دارد که با استفاده از آن Cut point ها رامی توانیم بخوانیم و برش های مختلف را در زمان مناسب جدا کنیم . در مورد گازهای هیدرو کربوری سبک با استفاده از هوا مایع گازهایی مثل پروپان و بوتان را مایع می کنند. هر قدر عمل تقطیر ادامه یابد و جداسازی بیشتر صورت گیرد، هیدروکربورهای داخل سنگین تر می شوند، اما اگر دما از حد مشخص بالاتر رود عمل کراکنیگ صورت می گیرد. چون هدف ما پی بردن به تفکیک نفت خام می باشد باید به شدت مراقب باشیم تا دما از یک حدی بالاتر نرود و کراکنیگ صورت نگیرد. در ستون تقطیر آزمایشگاهی ابتدا NGL ، آب ، بنزین ، نفت سفید و گاز جدا می شوند.
در این مرحله هیدروکربورهای باقی مانده به شدت ویسکوز شده اند و باید از فرآیندهای دیگری برای ادامه عملیات استفاده کنیم. بعد از این مراحل هریک از ترکیبات بدست آمده را به واحدهای بعدی می فرستند تا آزمایشاتی برای تعیین مشخصات هریک از آنها انجام گیرد. روغن ها را نیز برای تصفیه به سایر واحدها می فرستند. دیواره ستون تقطیر ذکرشده در فوق را دو جداره و جیوه اندود می کنند تا از هدر رفتن گرما جلوگیری شود.
اگر بخواهیم نفت خام را صادر کنیم، باید خصوصیات آن مانند API، درصد ناخالصی و ویسکوزیته آن را تعیین کنیم.
اساس تقطیر نفت خام بر مبنای اختلاف نقطه جوش است و در تقطیر نفت خام نمی توانیم یک ترکیب را بطور خالص جدا کنیم. بهمین خاطر از محدوده نقطه جوش استفاده می کنیم: مثلاً برش °C 65-15 یا برش 100-65 درجه سانتیگراد.
در این آزمایشگاه روشهای U.O.P, ASTM می توانند مورد استفاده قرار گیرند.
تقطیر بصورت batch است و دمای حمام را تا °C 20- قرارمی دهیم تاگازهایی مثل متان و اتان و.... را جدا کنیم، بعداً طبق چارت تقطیر عمل تقطیر را انجام می دهیم تا درصد رانسبت به خوراک اولیه بدست آوریم.
اگر دما را به 200 برسانیم فشار را باید پایین آوریم تا برشها Crack نشوند.بعد از تهیه برش ها آنها را به آزمایشگاه می فرستیم. مثلاً برا ی بنزین عدد اکتان مهم است و باید عدد اکتان تعیین شود.قیر و آسفالت و روغن را با دستگاه دیگری جدا می کنیم.
در این قسمت از دستگاههایی چون Separators ، Reflox و Condenser استفاده می شود.
همانطور که قبلاً اشاره شد در مورد نفت خام جداسازی مواد بصورت خالص بی معناست و فقط برشها جدا میشوند. دراینجا برای جداکردن برشهای °C 65-15 ابتدا شیرها را باز کرده و پس از جدا کردن مواد، شیرها را می بندیم و عملیات تقطیر را ( با توجه به دما ) ادامه می دهیم .
اگر هیدروکربورها خیلی حرارت ببیند، عمل کراکنیگ صورت می گیرد و چون ما نمی خواهیم این کار صورت بگیرد، در اینجا با اعمال فشارهای مختلف عمل جداسازی انجام می پذیرد.
در بخشهای دیگر ستون تقطیر عمل روغنگیری انجام می پذیرد که این عملیات در حدود فشارهای بین یک تا ده میلی متر جیوه انجام می پذیرد.
با داشتن وزن هر برش و داشتن وزن خوراک اولیه می توان درصد وزنی هر برش و درصد حجمی هر برش را بدست آورد. همچنین می توان وزن مخصوص هر برش رانیز بدست آورد.
از پارامترهای دیگر قیمت گذاری نفت خام بر اساس منحنی تقطیر(که S شکل است) صورت می پذیرد و برای هر محصول تستهای ویژه آن محصول صورت می گیرد:
1. عدد اکتان ( gasolin)
2. نقطه دودی (kerosine)
3. در مورد روغنها باید عملیات تصفیه روغن صورت بگیرد.
همچنین در واحد نفت خام بخش تفکیک و ارزیابی ترکیبات C1-C 100 و ایزومرهای آنها وجود دارد. نفت خامی که گاز آن استخراج شده باشد به آن نفت مرده می گویند.
نفت پس از اینکه تصفیه شد به خطوط لوله منتقل می شود. قبل از اینکه نفت به خطوط لوله انتقال داده شوند، باید یک سری آزمایشات جهت تشخیص مشخصات نفت انجام گیرد تا شناسنامه نفت خام تعیین شود.
مـا بایـد بـه ایـن نکتـه تـوجـه داشته باشیم که نفت خام برداشت شده از مخازن به مرور زمان تغییر خاصیت می دهند و سنگین تر می شوند.
همچنین نفت خام موجود در خط لوله از ترکیب نفت مخازن مختلف است وخواص آن نیز معمولاً متفاوت است. بنابراین بررسی خواص متفاوت آن باید صورت گیرد.
در مرحله تقطیر ابتدا NGL بنزین جدا می شود و عناصر سبک دربالا جداسازی شده و عناصر سنگین در پایین ستون جمع آوری می شوند. با داشتن وزن اولیه و وزن مواد بدست آمده، درصد مواد مختلف بدست می آیند و از آنجا منحنی تقطیر رسم می شود.
روشهای آزمایشگاهی تقطیر عبارتند از:ASTM ،U.O.P و I.P
از کارهای مهمی که در بخش تقطیر نفت خام صورت می گیرد عبارتند از:
1. تعیین وزن مخصوص
2. تعیینAPI
3. درصد ناخالصی ها ، نظیر گوگرد، نیتروژن و غیره
4. تعیین ویسکوزیته نفت
5. سبک یا سنگین بودن نفت خام
6. تعیین درصد فرآورده های نفتی
در روش های ASTM ستون تقطیر دارای حدود 32-30 سینی می باشد. این ستون بصورت دو جداره است. ایـن واحـد بصـورت batch عمل می کند. در بـالای ستون یک دماسنج قرار دارد که دما را نشان می دهد.
محدوده برای جمع آوری محصولات متغیر است.
از دمای °C 20- برای جمع کردن گازهای سبک نظیر متان تا دمای °C 150 برای جمع آوری ترکیبات سنگین در انتهای ستون استفاده می شود.
واحد تفکیک و تقطیر نیمه صنعتی نفت خام
پس از بهره برداری نفت خام از چاه و انتقال آن به مراکز بررسی، باید پتانسیل های آن را مورد بررسی قرار داد، به همین علت یک سری آزمایشات دقیق روی نفت خام انجام می گیرد تا بتوانیم مشخصات و ترکیبات موجود در نفت خام را ارزیابی کنیم.
این واحد در واقع 2 کار عمده انجام می دهد.
1. سرویس دهی به واحدهای دیگر و پتروشیمی
2. پروژه های تحقیقاتی در مورد نفت و ترکیبات آن و سرویس دهی در مورد صادرات
نفت خام بر اساس استانداردهای موجود تقطیر وبعلاوه روی نفت خام مطالعاتی انجام می دهند و برشهای مختلف را جدا می کنند و مسائل مختلفی را نظیر درصد گوگرد، Flash point, Dew point و ... را بررسی می کنند.
در این واحد از یک دستگاه ، شبیه تقطیر استفاده می شود این دستگاه حدود 65 سینی از نوع bubble cap دارد که در فشار اتمسفر کار می کند، همچنین می توان در شرایط خلاء نیز با آن کار کرد.
اصول کار دستگاه شبیه تقطیر بر اساس اختلاف در نقطه جوش ترکیبات مختلف می باشد. چون ترکیبات نفتی دارای برشهای مختلف با نقطه جوش متنوعی هستند.
در این دستگاه ستونی وجود دارد که ستون تقطیر نام دارد دمای آن از پایین به بالا در حال افزایش تدریجی است. ترکیبات سنگین در انتهای ستون و ترکیبات گازی در بالای ستون جمع می شوند.
اساس کار دستگاههای تقطیر به 2 صورت می باشد که عبارتند از:
قسمت پیوسته (سیستم) Continous
قسمت (سیستم) Batch
در سیستم پیوسته (که اساس کار این دستگاه شبیه تقطیر است ) همه محصولات جدا شده و هر کدام همزمان و در یک سیستم دقیق جمع آوری می شوند. یعنی می توان در یک لحظه تمام محصولات و برشهای نفتی را جمع کرد.
در سیستم Batch با توجه به اینکه در هر دمای خاصی یک ترکیب به دمای جوش می رسد با افزایش تدریجی دما هر محصول و برش خاصی به ترتیب جمع آوری می شود، پس زمان زیادتری لازم داریم.
اصولاً جهت مطالعات روی ترکیبات و برشهای نفتی 2 روش عمده وجود دارد که عبارتند از:
1. روش برج تقطیر
2. روش استفاده از نرم افزار
البته استفاده از نرم افزار برای دقت محاسبه برشهای آن و خواص سیالی دقیق تر است. اما چون در صنعت به اتکای کارهای آزمایشگاهی پروژه ها را تعریف می کنند، لازم است که دریک مقیاس نیمه صنعتی این آزمایشات انجام شود تا بتوانیم نظر مسؤلین صنعت نفت را به خود جلب کنیم . مثلاً تولید 20 بشکه به 20 لیتردر یک مقیاس نیمه صنعتی .
از این ستون تقطیر برای کارهای تحقیقاتی، تولیدی و شبیه سازی و غیره استفاده می شود.
ظرفیت دستگاه حدود 15 لیتر است. در قسمت بالایی بخارات را مایع می کنیم و سپس در پایین از طریق یک گیرنده آن را جمع آوری می کنیم.
از آب و یا الکل به عنوان مایع سرد کننده در سیستم استفاده می شود. در این میان یک سری تستهای جانبی روی نفت خام و یا فرآورده های نفتی انجام می دهند.
از جملـه کارهای دیگــر تعیین دقت ریـزش گازوئیل است. تعیین رنگ نفت نیز از جمله کارهای دیگر است.
از طریق دستگاه تقطیر وAD-4 یک منحنی، D-8 بدست می آید که از طریق نقطه جوش حاصل می گردد.(Automatic distillalion)
دستگاه پیلوت تقطیر
دستگاه موجود در این بخش می تواند چند شبکه تولید داشته باشد. به این شکل که به 2 صورت پیوسته و بسته کار می کند، می توان حرارت را به صورت بخار ویا به صورت الکتریکی اعمال کرد. اگر از روش پیوسته استفاده شود دستگاه با یک سرعت ثابت تغذیه می شود. در این حالت در اواسط مسیر ستون تقطیر، نیزمحصول خواهیم داشت. ولی در سیستم بسته فقط محصول بالاسری را خواهیم داشت. دستگاه دارای 15 سینی است.
ترکیبات نفتی را فقط تا حد خاصی می توان حرارت داد و اگر به حرارت بالاتری در بعضی جاها نیاز داشته باشیم می توانیم فشار خلاء را پایین بیاوریم. این سیستم این امکان را دارد که خلاء را تا 10 میلی بار پایین آورد.
5 مخزن در کنار دستگاه دیده می شود که هر یک از محصولات وارد آنها می شود. در این دستگاه به صورت یک در میان بین سینی ها دما داریم و نیز می توانیم با سرنگ نمونه برداری کنیم. به همین دلیل این دستگاه برای کارهای تحقیقاتی کاربرد زیادی دارد.
از آنجایی که سیستم بسته است ( برای کاهش امکان خطر) با استفاده از سیستم تولید هوا مایع که هوا را در دمای °C196- مایع کرده است- ترکیبات سبک ترا ز C3 را به حالت مایع در می آورند. با استفاده از سیستم هوا مایع می توان از یک سری به همراه تجهیزات الکل برای مایع کردن گازهای سبک استفاده کرد.
دستگاه CHROMPACK
برای جداسازی ترکیبات هیدرو کربوری به کار می رود.
دستگاه GC
در این بخش یافت می شود که قبلاً شرح داده شد.واحد تقطیر و تفکیک نیمه صنعتی یکی از بخشهای مکمل مهندسی نفت است.
دستگاه پیلوت تقطیر بیشتر برای کارهای تحقیقاتی استفاده می شود. برای خنک کردن بخارات سبک از یک حمام استفاده می شود که تا دمای 35 درجه زیر صفرخنک می کند.
هر قدر برگشت بیشتر باشد محصول خالص تر خواهد بود و زمان تقطیر در این صورت بیشتر می شود و تفاوت حالت Continous, batch در این است که در حالت های batch ورودی یکطرفه است و خروجی بطور پیوسته به بیرون می رود.
کاربردهای دستگاه پیلوت تقطیر (Fischer )
1. شبیه سازی شرایط پالایشگاه
2. تولید بعضی از محصولات ویژه درحد چند تن
3. کارهای تحقیقاتی
4. تحقیقات بر روی کاهش خسارت در تغییرات خوردگی
5. پالایشگاهها
یکی دیگر از تفاوتهای روش Continous , batch این است که در روش batch ما در هر لحظه درستون تقطیر فقط یک برش داریم اما در روش پیوسته در هر لحظه در ستون تقطیر بطور همزمان چند برش نفتی خواهیم داشت .
دستگاه Automatic distillation) AD-4)
برای تبخیر هیدروکربورهای سبک به کار می رود.
انواع سینی های موجود در ستون تقطیر عبارتند از:
1. ( perforated) : مشبک
2. bubble cap .
آزمایشگاه تفکیک: ( separation lab.)
در این آزمایشگاه در یک دستگاه تقطیرcm³ 100 از نمونه نفت را مورد تفکیک قرار می دهند و با استفاده از منحنی ها نقطه D-86 را بدست می آورند.
آزمایشگاه تصفیه روغن
در این آزمایشگاه کارهای زیر صورت می گیرد.
1- اندازه گیری برشهای روغنی ،
2- آسفالتین ،
3- مقدار آب و نمک نفت و
4- تعیین نقاط جوش برشهای سنگین
آزمایشگاه شناسایی هیدروکربورهای نفتی
محصول بالای ستون تقطیر و ترکیبات سبک را در اینجا آنالیز می کنند. در این قسمت از دستگاه GC استفاده می شود.
یک دستگاه دیگر نیز گروههای هیدروکربوری را شناسایی می کند. اما محدودیت دمایی دارد. نام این دستگاهPIONA Analyzer است و بالای °C 220 را نمی تواند اندازه گیری کرد.
چون هر کدام از برشهای نفتی دارای خواص منحصر بفرد است، با استفاده از منحنی های مخصوص که بصورت پیک هایی است به عنوان خروجی دستگاه(GC ) محسوب می شود، می توان به این طریق برشهای نفتی را تعیین کرد.
واحد قیر و راهسازی
از قیر برای منظور های مختلفی استفاده می شود که می توان به موارد زیر اشاره کرد:
1. در راهسازی
2. در قطعات الکتریکی برای اینکه اتصال کوتاه اتفاق نیفتد و برای عایقکاری نیز استفاده می شود.
3. در درزبندی معمولاً بین قطعات بتونی یک لایه قیر می ریزند تا انبساط و انقباض آنها را کنترل کند و صدمه ای وارد نشود.
4. در پوشش زیر بدنه اتومبیل و جلوگیری ازاکسید شدن قطعات استفاده می شود.
به طور کلی قیر را به 3 طریق می توان تهیه کرد که عبارتند از:
1. باقیمانده نفت خام در فرآیند پالایش در پالایشگاهها پس از اینکه به وسیله روشهای فیزیکی آب و مواد معدنی آنها جدا شده باشد .
2. قیرهای طبیعی : که در اثر مهاجرت نفت خام به سطح زمین و تحت تاثیر هوازدگی و تبخیر به قیر طبیعی تبدیل می شوند.
3. قیر زغال سنگ: قطران حاصل از عملیات کوره بلند است (قطرانCoaltar ) اگر قطران را بدون وجود اکسیژن حرارت دهند بهPeech ( قیرزغال سنگ ) تبدیل می شود.
تقریباً بدترین نفت خام، بهترین نفت خام برای تولید قیر است. برعکس بهترین نفت خام (سبک ترین)
آنها، بدترین نوع برای تولید قیر است. آنچه که در ایران تولید می شود، نفت خام حدواسط است که چندان برای تولید قیر مناسب نمی باشد.
قیر جزء سیالات غیر نیوتینی است. همچنین می دانیم که تغییرات آن نسبت به دما بسیار زیاد است. از آنجا که قیر جامد وزن مخصوص بیشتری نسبت به قیر مایع دارد، در حین فرآیند ذوب در انجام عمل Convection motion ایجاد اختلال می کند. زیرا قیر جامد در زیر قسمت ذوب شده و داغ قرار می گیرد.
قیر را معمولاً برای مصرف در حلال های نفتی حل می کنند و یا از مخلوط آن بصورت امولسیون با آب استفاده می شود. وجود آسفالتن در قیر باعث می شود که حجم قیر بالا رود و وزن مخصوص آن پایین بیاید. همچنین آسفالتن باعث بالا رفتن ویسکوزیته قیر می شود و به آن حالت شکنندگی می دهد. وجود رزین در قیر نیز باعث چسبندگی قیر می گردد.
کاربردهای قیر زغال سنگی
برای احیاء آهن از اکسید آهن استفاده می شود. زغال سنگ بدون حضور اکسیژن ( پیرولیز) به کک تبدیل می شود( حرارت حدود °C 1100 است). قیر زغال سنگ که تحت این حرارت قرار گیرد به کک تبدیل می شود. در بالای برج تقطیر این گازها قطران می گردند و دوباره جداسازی روی آنها صورت می گیرد که به اینها Core Coke Pitch می گویند.
Pitch: به هیدروکربوری گفته می شود که بدون حضور اکسیژن تحت حرارت قرارگیرد.
در ایـن واحـد هـم کارهـای تحقیقـاتـی و هـم کارهـای پروژه ای صورت می گیرد. مثلاً مشکلات موجود در پالایشگاههای داخلی مورد بررسی قرار می گیرند.
قیرها دارای مشخصاتی هستند که به آنها Penetration grade گفته می شود.
قیرهایی که بر اساس نفت خام مخلوط بدست می آیند دارای مشخصات ساختاری اند که براحتی نمی توان این مشخصات را پیدا کرد. Penetration gradeخواص قیر را به خوبی نشان نمی دهد.
معمولاً قیر رابصورت امولسیون در می آورند، امولسیون به این خاطر است که قیر و آب در هم حل نمی شوند، در اینجا ازemulsifier استفاده می شود. این دستگاه از یک طرف ذرات قیر و از طرف دیگر ذرات آب را در بر می گیرد و بدینصورت قیر بصورت امولسیون در می آید.
انواع emulsifier
1. ionic
2. noniomc
3. cationic
4. رسی
ترکیب شیمیایی : هر قدر که در ستون تقطیر پایین بیاییم مشخصات منحصر به یک محصول خاص دربرشها مشخص می شود. تعداد هیدروکربورهای موجود در هر برش فرق دارد و خصوصیات شیمیایی این برشها کاملاً با هم فرق دارند. اگر بنزین دارای 19 مولکول باشد، که این مولکولها همگی مختلفند، ممکنست خواص فیزیکی این مولکولها یکسان باشد ولی خواص شیمیایی اینها تفاوت دارند.
نظرات مختلف در مورد مواد تشکیل دهنده قیر:
دو نظریه در این مورد وجود دارد:
نظریه اول : Resin و Asphaltene
نظریه دوم : Saturate، Aromatic ، Polar Aromatic و Asphaltene
برای هرکدام از اینها یک مشخصات خاصی وجود دارد که باید در محدوده های خاص خودش از آنها استفاده نمود.
یکی دیگر از کاربردهای قیر برای پوشش لوله های فلزی گاز و نفت و آب در روی زمین که مرطوب بوده و یا در زیر زمین می باشد. هر قدر نسبت C ⁄ H بیشتر باشد قیر بهتری خواهیم داشت.
آسفالتن: مولکولی است که حجم زیادی را در بر می گیرد ومانند اسفنج متبلور است.
برای پمپاژ کردن قیر نیاز به محاسبات ویژه و پیچیده ریاضی داریم.
ارزیابی قیر هایی که در راه سازی مصرف میشود، سه خصوصیت دارد.(80% قیر برای راهسازی استفاده می شود).
1. Pain grade
2. Viscosity grade
3. Performance grading
بهترین نفت خام، نفت خام پارافینی است که برای تهیه هیدروکربورهای سبک کاربرد دارد. در آمریکا 15 پالایشگاه برای تولید قیر طراحی شده است اما در ایران متاسقانه چنین پالایشگاهی وجود ندارد.
سابقه استفاده از قیر به دروانهای قدیم بر می گردد که قیر از طریق شکستگیهای سطح زمین و درزها به سطح زمین راه پیدا می کرد. مردم از آن به عنوان 2 وسیله اصلی و عمده استفاده می کردند که عبارتند از:
1. چسبندگی زیاد
2. ضد زنگ بودن
از بالای برج تقطیر به پایین نسبت C/H ( نسبت کربن به هیدروژن) افزایش می یابد، یعنی ترکیبات سنگین تر را خواهیم داشت. در واقع ترکیبات آروماتیک افزایش می یابد.
در قسمت Vaccum bottom : قیرهای نفتی دارای مولکولهای خیلی زیادی هستند.